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Abstract

We generalise the problem of reward modelling (RM) for reinforcement learning
(RL) to handle non-Markovian rewards. Existing work assumes that human evalua-
tors observe each step in a trajectory independently when providing feedback on
agent behaviour. In this work, we remove this assumption, extending RM to capture
temporal dependencies in human assessment of trajectories. We show how RM can
be approached as a multiple instance learning (MIL) problem, where trajectories
are treated as bags with return labels, and steps within the trajectories are instances
with unseen reward labels. We go on to develop new MIL models that are able to
capture the time dependencies in labelled trajectories. We demonstrate on a range
of RL tasks that our novel MIL models can reconstruct reward functions to a high
level of accuracy, and can be used to train high-performing agent policies.

1 Introduction

There is growing consensus around the view that aligned and beneficial AI requires a reframing
of objectives as being contingent, uncertain, and learnable via interaction with humans [35]. In
reinforcement learning (RL), this proposal has found one formalisation in reward modelling (RM):
the inference of agent objectives from human preference information such as demonstrations, pairwise
choices, approval labels, and corrections [29]. Prior work in RM typically assumes that a human
evaluates the return (quality) of a sequential trajectory of agent behaviour by summing equal and
independent reward assessments of instantaneous states and actions, with the aim of RM being
to reconstruct the underlying reward function. However, in reality the human’s experience of a
trajectory is likely to be temporally extended (e.g., via a video clip [12] or real-time observation),
which opens the door to dependencies between earlier events and the assessment of later ones. The
independence assumption may be both psychologically unrealistic given human memory limitations
[26], and technically naïve given the difficulty of building complete instantaneous state representations
[25]. We thus seek to generalise RM to allow for temporal dependencies in human evaluation, by
postulating hidden state information that accumulates over a trajectory. Reconstruction of the human’s
preferences now requires the modelling of hidden state dynamics alongside the reward function itself.

In tackling this generalised problem, we identify a structural isomorphism between RM (specifically
from trajectory return labels) and the established field of multiple instance learning (MIL) [10].
Trajectories are recast as bags and constituent state-action pairs as instances, which collectively
contribute to labels provided at the bag level by interacting in potentially complex ways. This
mapping inspires a range of novel MIL model architectures that use long short-term memory (LSTM)
modules [19] to recover the hidden state dynamics, and learn instance-level reward predictions from
return-labelled trajectories of arbitrary length. In experiments with synthetic oracle labels, we show
that our MIL RM models can accurately reconstruct ground truth hidden states and reward functions
for non-Markovian tasks, and can be straightforwardly integrated into RL agent training to achieve
performance matching, or even exceeding, that of agents with direct access to true hidden states and
rewards. We then apply interpretability analysis to understand what the models have learnt.
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Our contributions are as follows:

1. We generalise RM to handle non-Markovian rewards that depend on hidden features of the
environment or the psychology of the human evaluator in addition to visible states/actions.

2. We identify a structural connection between RM and MIL, creating the opportunity to
transfer concepts and methods between the two fields.

3. We propose novel LSTM-based MIL models for this generalised RM problem, and develop
interpretability techniques for understanding and verifying the learnt reward functions.

4. We compare our proposed models to existing MIL baselines on five non-Markovian tasks,
evaluating return prediction, reward prediction, robustness to label noise, and interpretability.

5. We demonstrate that the hidden state and reward predictions of our MIL RM models can be
used by RL agents to solve non-Markovian tasks.

The remainder of this work is as follows. Section 2 discusses related work in RM and MIL, Section
3 gives a formal problem definition and describes our MIL-inspired methodology, and Section 4
presents our experiments and results. We discuss key findings in Section 5, and Section 6 concludes.
All of our source code is available in a public repository.1

2 Background and Related Work

Reward Modelling RM [29] aims to infer a reward function from revealed human preference
information such as demonstrations [32], pairwise choices [12], corrections [4], good/bad/neutral
labels [33], or combinations thereof [24]. Most prior work assumes a human evaluates a trajectory by
summing independent rewards for each state-action pair, but in practice their experience is likely to
be temporally extended (e.g., via a video clip), creating the opportunity for dependencies to emerge
between earlier events and the assessment of later ones. As noted by Chan et al. [11] and Bewley
and Lecue [8], such dependencies may arise from cognitive biases such as anchoring, prospect bias,
and the peak-end rule [26], but they could equally reflect rational drivers of human preferences not
captured by the state representation. Some efforts have been made to model temporal dependencies,
such as a discrete psychological mode which evolves over consecutive queries about hypothetical
trajectories [6], or a monotonic bias towards more recently-viewed timesteps due to human memory
limitations [28]. Elsewhere, Shah et al. [36] use human demonstrations and binary approval labels
to learn temporally extended task specifications in logical form. In comparison to these restricted
examples, our work provides a more general approach to capturing temporal dependencies in RM.

Non-Markovian Rewards In the canonical RL problem setup of a Markov decision process (MDP),
rewards depend only on the most recent state-action pair. In a non-Markovian reward decision process
(NMRDP) [2], rewards depend on the full preceding trajectory [2]. NMRDPs can be expanded into
MDPs (and thus solved by RL) by augmenting the state with a hidden state that captures all reward-
relevant historical information, but this is typically not known a priori. Data-driven approaches to
learning NMRDP expansions [21] often make use of domain-specific propositions and temporal logic
operators [3, 39, 41]. Outside of the RM context, recurrent architectures such as LSTMs have been
used in NMRDPs to reduce reliance on pre-specified propositions [23]. They also have a long history
of use in partially observable MDPs, where dynamics are also non-Markovian [5, 17, 46].

Multiple Instance Learning In MIL [10], datasets are structured as collections of bags Xi ∈ X,
each of which is comprised of instances {xi1, . . . , xik} and has an associated bag-level label Yi and
instance-level labels {yi1, . . . , yik}. The aim is to construct a model that learns solely from bag labels;
instance labels are not available during training, but may be used later to evaluate instance-level
predictions. The simplest MIL approaches assume that instances are independent and that the bag is
unordered, but models exist for capturing various types of instance dependencies [22, 42, 45]. LSTMs
have emerged as a natural architecture for modelling temporal dependencies among ordered bags,
where they can be utilised to aggregate instance information into an overall bag representation. They
have previously been applied to standard MIL benchmarks [44], as well as specific problems such as
Chinese painting image classification [30]. As we discuss in Section 3.2, these existing models are
somewhat unsuitable for use in RM, leading us to propose our own novel model architectures.

1https://github.com/JAEarly/MIL-for-Non-Markovian-Reward-Modelling
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3 Methodology

In this section, we present the core methodology of our work. We formally define the new paradigm
of non-Markovian RM (Section 3.1), before drawing on the MIL literature to propose models that
can be used to solve this generalised problem (Section 3.2). We then go on to discuss how we can use
our learnt RM models for training RL agents on non-Markovian tasks (Section 3.3).

3.1 Formal Definition of Non-Markovian RM

Consider an agent interacting with an environment with Markovian dynamics. At discrete time t,
the current environment state st ∈ S and agent action at ∈ A condition the next environment state
st+1 according to the dynamics function D : S × A → ∆S. A trajectory ξ ∈ Ξ is a sequence of
state-action pairs, ξ = ((s0, a0), ..., (sT−1, aT−1)), and a human’s preferences about agent behaviour
respect a real-valued return function G : Ξ→ R. In traditional (Markovian) RM, return is assumed
to decompose into a sum of independent rewards over state-action pairs, G(ξ) =

∑T−1
t=0 R(st, at),

and the aim is to reconstruct R′ ≈ R from possibly-noisy sources of preference information. In our
generalised non-Markovian model, we consider the human to observe a trajectory sequentially and
allow for the possibility of hidden state information that accumulates over time and parameterises R:

G(ξ) =

T−1∑
t=0

R(st, at, ht+1) where ht+1 = δ(ht, st, at), (1)

δ is a hidden state dynamics function, and h0 is a fixed value for the initial hidden state. Reconstruction
of the human’s preferences now requires the estimation of δ′ ≈ δ and h′0 ≈ h0 alongside R′ ≈ R.
We visualise the difference between Markovian and non-Markovian RM in Figure 1.

Figure 1: In Markovian RM, the human is assumed to sum (+) over independent and equal reward
assessments for the state-action pairs in a trajectory. In non-Markovian RM, per-timestep rewards
additionally depend on hidden state information h that accumulates over time.

The hidden state h may be interpreted as (1) an external feature of the environment that is detectable
by the human but excluded from the state, or (2) a psychological feature of the person themselves,
through which their response to each new observation is influenced by what they have seen already.
The latter framing is more interesting for our purposes, and connects to the psychological literature
on human judgement, memory, and biases [26]. In practice, hidden state information may encode the
human’s preferences about the order in which a sequence of behaviours should be performed, the
effect of historic observations on their subjective mood (and in turn on their reward evaluations), or
cognitive biases which corrupt the way they aggregate instantaneous rewards into trajectory-level
feedback. All of these complications are liable to arise in practical RM applications, but cannot be
handled when the Markovian reward assumption is made. Appendix B elaborates on this discussion,
presenting motivating use cases and limitations of non-Markovian RM.

In this work, we focus on one of the simplest and most explicit forms of preference information: direct
labelling of returns G(ξi) for a dataset of N trajectories {ξi}Ni=1. We aim to solve the reconstruction
problem by minimising the squared error in predicted returns:

argmin
R′,δ′,h′

0

N∑
i=1

(
G(ξi)−

Ti−1∑
t=0

R′(si,t, ai,t, h
′
i,t+1)

)2
where

h′i,0 = h′0
h′i,t+1 = δ′(h′i,t, si,t, ai,t)

∀i ∈ {1..N}.

(2)
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We observe that Equation 2 perfectly matches the definition of a MIL problem. Each trajectory ξi
can be considered as an ordered bag of instances ((si,0, ai,0), ..., (si,Ti−1, ai,Ti−1)) with unobserved
instance labels R(si,t, ai,t, hi,t+1), an observed bag label G(ξi) =

∑T−1
t=0 R(si,t, ai,t, hi,t+1), and

temporal instance interactions via the changing hidden state hi,t. This correspondence motivates us
to review the space of existing MIL models (specifically those that model temporal dependencies
among instances) to provide a starting point for developing our non-Markovian RM approach.

3.2 MIL RM Architectures

The MIL literature contains a variety of architectures for handling temporal instance dependencies,
including graph neural networks (GNNs) [42] and transformers [37]. While effective for many
problems, such architectures are an unnatural fit to non-Markovian RM as they contain no direct
analogue of a hidden state h′ carried forward in time, instead handling dependencies via some variant
of message-passing between instances. LSTM-based MIL architectures [30, 44] provide a more
promising starting point since they explicitly represent both h′ (implemented as a continuous-valued
vector) and its temporal dynamics function δ′ (a particular arrangement of gating functions).
Starting from an existing LSTM-based MIL architecture, we propose two successive extensions as
well as a naïve baseline that cannot handle temporal dependencies. All four architectures include a
feature extractor (FE) for mapping state-action pairs into feature vectors and a head network (HN) that
outputs predictions. These architectures are depicted in Figure 2. Note we use the same nomenclature
as [10] and [45]: embedding space approaches produce an overall bag representation that is used for
prediction, while instance space approaches produce predictions for each instance in the bag and
then aggregate those predictions to a final bag prediction.

Base Case: Embedding Space LSTM This architecture, proposed by Wang et al. [44], processes
all instances in a bag sequentially and uses the final LSTM hidden state as a bag embedding. This is
fed into the HN, which predicts the bag label g′ (return in the RM context). Although this model can
account for temporal dependencies, it does not inherently produce instance predictions (rewards),
which require some post hoc analysis to recover. While methods exist for computing instance
importance values as a form of interpretability [13], these are not guaranteed to sum to the bag label
as stipulated by the reward-return formulation. We propose a new method: at time t, the predicted
reward r′t is calculated by feeding the LSTM hidden state at times t−1 and t into the HN to obtain two
partial bag labels/returns g′t−1 and g′t, and computing the difference of the two, i.e., r′t = g′t − g′t−1.
We define g′0 = 0. This post hoc computation is shown in purple in Figure 2.

Extension 1: Instance Space LSTM The post hoc computation of reward proposed above is rather
inelegant and often yields poor predictions (see Section 4 and Appendix D), likely because rewards
are never computed or back-propagated through during learning. This leads us to propose an improved
architecture, which is structurally similar but differs in how network outputs are mapped onto RM
concepts. The change places reward predictions on the back-propagation path. Given the LSTM
hidden state at time t, the output of the HN is taken to be the instantaneous reward r′t rather than the
partial return. Rewards are computed sequentially for all timesteps in a trajectory and summed to
give the return prediction g′. We thereby obtain a model that both handles temporal dependencies
and produces explicitly-learnt reward predictions.

Extension 2: Concatenated Skip Connection (CSC) Instance Space LSTM In both of the pre-
ceding architectures, the LSTM hidden state h′t is the sole input to the HN. This requires h′t to
represent all reward-relevant information from both the true hidden state ht and the latest state-action
pair st−1, at−1 to achieve good performance. To lighten the load on the LSTM, we further extend the
Instance Space LSTM model with a skip connection [18, 20] which concatenates the FE output onto
the hidden state before feeding it to the HN. In principle, this should allow the hidden state to solely
focus on representing temporal dependencies. As well as improving RM performance compared to
an equivalent model without skip connections, we find in Section 5.1 that this modification tends to
yield more interpretable and disentangled hidden state representations.

Markovian Baseline: Instance Space Neural Network (NN) To quantify the cost of ignoring
temporal dependencies, we also run experiments with a baseline architecture that feeds only the FE
output for each state-action pair into the HN, yielding fully-independent reward predictions which are
summed to give the return prediction. This independent predict-and-sum architecture has precedence
in both MIL, where it is referred to as mi-Net by Wang et al. [45], and in RM, where it embodies the
de facto standard Markovian reward assumption [12].
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Figure 2: MIL architectures used in this work. FE = feature extractor; HN = head network; (+) =
scalar summation; (−) = scalar subtraction; (C) = vector concatenation.

3.3 Training Agents with Non-Markovian RM Models

In this work, as in RM more widely, we are not solely interested in learning reward functions to
represent human preferences, but also in the downstream application of rewards to train agents’
action-selection policies. After optimising our LSTM-based models on offline trajectory datasets, we
deploy them at the interface between conventional RL agents and their environments. Going beyond
prior work, where a learnt model is used to either generate a reward signal for an agent to maximise
[12] or augment its observed state representation with hidden state information [21], our models serve
a dual role, providing both rewards and state augmentations. Figure 3 describes this setup in detail.

Figure 3: During RL agent training, our LSTM MIL models sit at the centre of the agent-environment
loop by which states st and actions at are exchanged. We focus on episodic tasks, where the
environment state periodically resets. The LSTM hidden state is simultaneously reset to h′0 at the
start of an episode, then is iteratively updated over time t given the state-action pairs st, at. At time t
the environment state st is augmented with the post-update hidden state h′t+1 by concatenation, and
this augmented state is observed by the agent. st, at and h′t+1 are used to compute a reward r′t+1
following the relevant steps from Figure 2, and the reward is also sent to the agent. In the language
of NMRDPs, the hidden state augmentation expands the agent’s learning problem into an MDP by
providing the additional information required to make the rewards Markovian. Note that unlike
during learning of the MIL models, return predictions are never required.

4 Experiments and Results

After initially validating our models on several toy datasets (see Appendix D), we focus the bulk of
our evaluation on five RL tasks. As running experiments with people is costly, we use the standard
RM approach of generating synthetic preference data (here trajectory return labels) using ground
truth oracle reward functions [12] (for a discussion comparing the use of oracle and human labels,
see Appendix C). Unlike prior work, these oracle reward functions depend on historical information
that cannot be recovered from the instantaneous environmental state, thereby emulating the disparity
between the information that a human evaluator possesses while viewing a trajectory sequentially,
and that contained in the state alone. In this section, we introduce our RL tasks (Section 4.1), evaluate
the quality of reward reconstruction (Section 4.2), investigate the use of MIL RM models for agent
training (Section 4.3), and evaluate their robustness to label noise (Section 4.4).
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4.1 RL Task Descriptions

We apply our methods to five non-Markovian RL tasks, the first four of which are within a common
2D navigation environment and are specifically designed to capture different kinds of non-Markovian
structure. Each environment has two spawn zones and an episode time limit of T = 100; see Figure
4. In each case, the environment state contains the x, y position of the agent only. The tasks involve
moving into a treasure zone, contingent on some hidden information that cannot be derived from the
current x, y position, but is instead a function of the full preceding trajectory. In the first two cases the
hidden information varies with time only, but in the other two it depends on the agent’s past positions.
Timer For times t ≤ 50 the treasure gives a reward of −1 for each timestep that the agent spends
inside it, before switching to +1 thereafter. Since time is not included in the environment state,
recovering the reward function by only observing the agent’s current position is impossible.
Moving The Timer task only captures a binary change, therefore we generalise it to be continuous.
In this case, the treasure zone oscillates left and right at a constant speed. Again, this is not captured
in the environment state, but can be recovered if the length of the preceding trajectory is known.
Key Before reaching the treasure zone, the agent must first enter a second zone to collect a key;
otherwise it receives 0 reward. As the key’s status is not captured in the environment state, a temporal
dependency exists between the agent’s past positions and the reward it obtains from the treasure.
Charger We generalise the Key task by replacing the key zone with a charging zone that builds up
the amount of reward the agent will receive when it reaches the treasure. The reward now depends
not only on whether the agent visits a zone (binary), but how long it spends there (continuous).

For the fifth and most complex task, we adapt Lunar Lander from OpenAI Gym [9], adding the
condition that the lander should take off again and stably hover after 50 timesteps on the landing
pad. This is analogous to the Charger task but with a larger state-action space and longer episodes
(T = 500). Further details on the tasks and MIL model hyperparameters are given in Appendix E.

Spawn
zones

Treasure:
-1  when t < 50
+1 when t > 50

Timer Moving Key

Constant +1
but oscillates
horizontally

0 without key
+1 with key

Key:
collected

when entered
Charger

+1 × charge level

Charging zone:
increments charge

by 0.02 per step
(max = 1)

Lunar Lander

Landing pad:
+1 when pad < 50
0 when pad > 50,

increments pad
by 1 per step

Hover zone:
0 when pad < 50
+1 when pad > 50

Spawn zone

Figure 4: Visualisations of the five non-Markovian RL tasks.

An important design decision for the LSTM-based models is the size of the hidden state, as it affects
both performance and interpretability. For all the above tasks, we know a priori that it is possible to
capture the temporal dependencies in at most two dimensions, so we constrain our models to use 2D
hidden states. This allows us to visualise and interpret the hidden representations in Section 5.1.

4.2 Reward Modelling Results

Below we discuss the performance of the reward reconstruction for the different MIL RM models on
our five RL tasks. For each task, we generate initial trajectories to form our MIL RM datasets (see
Appendix E). Results from MIL models trained on these trajectories are given in Table 1. We observe
that the CSC Instance Space LSTM model is on average the best-performing model for predicting
both trajectory returns and timestep rewards. While the Embedding Space LSTM model performs
best at predicting return on the Key and Lunar Lander tasks (as is not constrained to the summation
of reward predictions as in the other architectures), it struggles on the reward metric (due to the use
of a proxy post hoc method). As it is important for these models to achieve strong performance on
both return and reward prediction, the Instance Space LSTM and CSC Instance Space LSTM models
are better candidates than the Embedding Space LSTM. Also note that the Instance Space NN that
serves as our Markovian RM baseline performs very poorly on return prediction, indicating that these
tasks indeed cannot be learnt without modelling temporal dependencies.
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Table 1: MIL RM return (top) and reward (bottom) results, using ten repeats. The Lunar Lander
results are the average test set MSE of the top five models (with scaling; see Appendices E.4 and
E.5). For the other tasks, each measurement is the test set MSE averaged over all ten repeats. The
standard errors of the mean are given, and the Lunar Lander reward results are scaled by 1× 10−5.

Model Timer Moving Key Charger Lunar Lander

Instance Space NN 130.8 ± 1.530 22.24 ± 0.441 7.764 ± 0.232 7.783 ± 0.214 2.297 ± 0.058
Embedding Space LSTM 3.151 ± 0.662 13.04 ± 0.899 0.360 ± 0.055 0.689 ± 0.124 0.416 ± 0.048
Instance Space LSTM 7.313 ± 2.627 11.13 ± 1.169 0.488 ± 0.062 0.628 ± 0.126 1.223 ± 0.431
CSC Instance Space LSTM 0.605 ± 0.166 5.307 ± 0.299 0.391 ± 0.083 0.125 ± 0.012 0.501 ± 0.035

Instance Space NN 0.217 ± 0.001 0.068 ± 0.000 0.011 ± 0.000 0.025 ± 0.000 7.484 ± 0.861
Embedding Space LSTM 101.8 ± 60.35 3.033 ± 0.715 0.010 ± 0.008 0.037 ± 0.016 120.2 ± 24.27
Instance Space LSTM 0.263 ± 0.038 0.069 ± 0.005 0.002 ± 0.000 0.005 ± 0.001 9.336 ± 3.116
CSC Instance Space LSTM 0.073 ± 0.016 0.026 ± 0.002 0.001 ± 0.000 0.001 ± 0.000 7.365 ± 1.032

4.3 RL Training Results

Following the method in Section 3.3, we then train Soft Actor-Critic [15] (Lunar Lander) and Deep
Q-Network [31] (all others) RL agents to optimise the rewards learnt by the LSTM-based models.
We evaluate agent performance in a post hoc manner by passing its trajectories to the relevant oracle.
This evaluation provides an end-to-end measure of both reward reconstruction and policy learning,
and is standard in RM [12]. We baseline against agents trained with access to: a) the oracle reward
function and the oracle hidden states, and b) just the oracle reward function without hidden states (i.e,
using only the environment states that are missing information). In Figure 5, we observe that the CSC
Instance Space LSTM model enables the best RL agent performance, coming closest to the oracle.
Interestingly, for the Timer and Lunar Lander tasks, the CSC Instance Space LSTM model actually
outperforms the use of the oracle, suggesting that the learnt hidden states are easier to exploit for
policy learning than the raw oracle state (we investigate what these models have learnt in Section
5.1). Note the poor performance of agents trained without hidden state information, which aligns
with expectations. For further details on agent training, see Appendix F.

Oracle (without hidden state) Embedding Space LSTM Instance Space LSTM CSC Instance Space LSTMOracle
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Note: lower
quartile for     

= 0

1 400

0
43

1 400

0
10

0 Moving ChargerTimer Key Lunar Lander

1 800

0
72
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Figure 5: RL performance for different training configurations on our five RL tasks. The results given
are the medians and interquartile ranges. For the oracle results, we trained ten repeats, and for the
MIL-LSTM results, we performed one RL training run for each MIL-LSTM model repeat.

For Lunar Lander, we perform a deeper analysis of RL training performance, by decomposing the
oracle return curves from Figure 5 into the four reward components Rpad, Rno_contact, Rhover and
Rshaping (see Appendix E.1 for definitions). The decomposed curves, shown in Figure 6, allow us
to diagnose the origins of the performance disparity between runs using different LSTM model
architectures. There is relatively little separation in performance on the shaping reward Rshaping and
pad contact reward Rpad (for the latter, all runs end up reliably achieving the maximum possible
reward of 49, although those using Embedding Space LSTM models require significantly more
training time). This suggests that all models have been able to recover these components with
reasonable fidelity. However, there are marked differences in performance on Rno_contact and Rhover
(the components relating to the second task stage of taking off and moving to the hover zone). For
Rhover, runs using the CSC Instance Space LSTM peak at a return of around 200 from this component,
while those using the other two models almost never achieve non-zero return, i.e., only the RL agents
trained using the CSC Instance Space LSTM RM models reliably learn to hover. This indicates that
the models have learnt very different representations of reward and hidden state dynamics, which are
effective for policy learning in the case of the CSC model, and highly ineffective for the others.
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Observe that runs using CSC Instance Space LSTM models outperform those with direct access
to the ground truth oracle on all components, and most markedly on Rhover. This counterintuitive
finding suggests that this model reliably learns hidden state representations that are easier for RL
agents to leverage for policy learning than the ground truth ones, and potentially that certain errors in
the reward prediction may actually be beneficial for the purpose of helping agents to complete the
underlying task (especially the hovering stage). In typical RL parlance: the model’s reward function
appears to be better shaped than the ground truth. The potential origins of this better-than-oracle
phenomenon are investigated in Figure A5 (Appendix G).

Embedding Space LSTM Instance Space LSTM CSC Instance Space LSTMOracle
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et
ur

n

Episode Number1 800

0
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1 800

0
26

0
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0
63

1 800

0
33

1

Figure 6: Decomposed oracle return curves for Lunar Lander.

4.4 Robustness to Mislabelling

In this work, the return labels are provided by oracles rather than real people. When using human
evaluators, there is likely to be uncertainty in the labels, and it is important to evaluate model
robustness against such noise [28]. We implement noise through label swapping [34]; this ensures
the marginal label distribution remains the same and does not include out-of-distribution returns.
In Figure 7, we show how both return and reward prediction decay with noise levels increasing
from 0 (no labels swapped) to 0.5 (half swapped). The rate, smoothness, and consistency (across
three repeats) of this decay varies between tasks, with decays in return prediction generally being
smoother. We observe that the CSC Instance Space LSTM model remains the strongest predictor of
both return and reward in the majority of cases, indicating general robustness and providing evidence
that the model should still be effective with imperfect human labels. On all metrics aside from Timer
reward loss (where the mix of negative and positive rewards makes the effect of noise especially
unpredictable), a noise level of at least 0.3 is required for the CSC Instance Space LSTM model to
perform as badly as the Instance Space NN baseline does with no noise at all.
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Figure 7: Performance of MIL RM models subject to label noise. We omit the Embedding Space
LSTM reward losses as they are very high, and the Lunar Lander task due to long training times.

5 Discussion

In this section, we seek to interpret our MIL RM models, analysing the distribution of learnt hidden
states (Section 5.1) as well as their temporal dynamics over the course of a trajectory (Section 5.2).
Finally, in Section 5.3 we discuss the limitations of this work and potential areas for future work.
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5.1 Hidden State Analysis

The primary purpose of RM is to perform accurate reward reconstruction to facilitate agent training,
but there is a secondary opportunity to improve understanding of human preferences through inter-
pretability analysis of the learnt models. We can directly visualise the 2D LSTM hidden states of our
oracle experiments, which enables a qualitative comparison of the various model architectures (see
Figure 8). Visualising the hidden states with respect to the temporal dependencies indicates that the
CSC Instance Space LSTM model has learnt insightful hidden state representations. Breaking down
the CSC Instance Space LSTM model hidden embeddings: for the Timer task, time is represented
along a curve, with a sparser representation around t = 50 (the crossover point when the treasure
becomes positive). For the Moving task, time is similarly captured along with an additional notion of
the change in treasure direction from right to left. For the Key task, the binary state of no key vs key
is separated, with additional partitioning based on x position, denoting the two different start points
of the agent. In the Lunar Lander task, the model has learnt a strong separation between states either
side of the crossover point when the time on the pad is equal to 50, with high sparsity around the
crossover point. In comparison, the Embedding and Instance Space LSTM models have not learnt as
sparse a representation. We discuss the Charger task in Section 5.2.
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Figure 8: Learnt hidden state embeddings for our MIL RM models. For each model and task, we
categorise the hidden state embeddings depending on the true environment state (first column for
each model). In and Out environments states indicate whether the agent is in the treasure zone or
not, and for the Moving task, Left and Right indicate the direction in which the goal is currently
moving. We also provide labelling based on temporal information (second column for each model).
Furthermore, we include markers to indicate the hidden states for the centres of the agent spawn
zones. In each case, we elected to use the best-performing repeat for each model as assessed by the
reward reconstruction (see Table 1). Note, for the Key task, as the temporal information is captured in
the state categorisation (No Key vs Key), we use the second column to show the relationship between
the hidden embeddings and the agent’s x position.

5.2 Trajectory Probing

We further interpret our models by visualising the learnt reward with respect to the environment state,
and by using hand-specified probe trajectories to verify that the learnt hidden state transitions mimic
the true transitions. We present the above for the CSC Instance Space LSTM model on the Charger
task in Figure 9 (Appendix G contains similar figures for all other tasks). The top row shows that the
model has correctly learnt the relationships between position, charge, and reward (reward increases
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in the treasure zone as charge increases). From the probes, we can see how the charge level can be
recovered from the hidden states. We also note that the inflection point between under-charging and
over-charging is captured, i.e., this is where the optimal charge level lies, subject to some noise based
on where the agent starts in the spawn zones. Furthermore, with the Challenging probe, we observe
that the learnt hidden states align with the agent moving in and out of the charging zone.
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Figure 9: Interpretability for the CSC Instance Space LSTM model on the Charger task. Top: the
learnt relationship between agent position, charge level, and reward. Middle/bottom: Four probe
trajectories demonstrating hidden state transitions as the trajectory progresses. Optimal: best possible
return (charge to sufficient level then maximise time in treasure). Over-charged: continuing to charge
after maximum charge of 1 is reached. “xn” labels indicate the agent remains in a position for n
timesteps. As in Figure 8, we use the best-performing model according to reward reconstruction.

5.3 Limitations and Future Work

Although we analyse the performance of our methods in the presence of noisy labels in Section 4.4, a
major area of future work is to apply our methods to human labelling (for a discussion of this, see
Appendix C). Another area of future work involves more complex environments, for example the use
of tasks with image observations, similar to the Atari environments in Open AI Gym [9]. Furthermore,
we perform RM from either an offline dataset or from only one RL training iteration; an iterative
bootstrapping approach with multiple RL + RM training iterations could lead to improved RL results.
There are also limitations with our MIL RM approach for the Lunar Lander task; see Appendix E.5
for details and suggestions for future work. More generally, we hope that our identification of the
link between RM and MIL may inspire a bidirectional transfer of tools and techniques.

6 Conclusion

We posed the problem of non-Markovian RM, which removes an unrealistic assumption about how
humans evaluate temporally extended agent behaviours. After identifying an isomorphism between
RM and MIL, we proposed and evaluated novel MIL-inspired models that allow us to reconstruct
non-Markovian reward functions, augment agent training, and interpret their learnt representations.
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A Implementation and Resource Details

This work was implemented in Python 3.8 / 3.10 and the machine learning functionality used PyTorch.
All required libraries for our work are given in a requirements.txt file. Our code is publicly
accessible at https://github.com/JAEarly/MIL-for-Non-Markovian-Reward-Modelling.
The majority of MIL model training was carried out on a remote GPU service using a Volta V100
Enterprise Compute GPU with 16GB of VRAM, which utilised CUDA v11.0 to enable GPU support
(IRIDIS 5, University of Southampton). For the Lunar Lander task, training each MIL model took a
maximum of eight hours. For the other tasks, this was a maximum of two hours. Trained models are
included alongside the code. Fixed seeds were used to ensure consistency of dataset splits between
training and testing; these are included in the scripts that are used to run the experiments. All our
datasets were generated from code; both the scripts to generate the data and also the derived datasets
themselves are included alongside our model training code. Dataset generation, as well as all RL
agent training, was conducted on a second remote GPU service using a compute node with two
Nvidia Pascal P100 cards. Data generation took a maximum of three hours per dataset (BlueCrystal
Phase 4, University of Bristol). Agent training for the 2D navigation tasks was computationally
light, requiring 8-12 minutes per 400-episode run, although we completed ten repeat runs for each
permutation of task and MIL model architecture (one per MIL training repeat). 800-episode RL runs
for Lunar Lander took approximately two hours each. Further details on executing the scripts to
reproduce our results can be found in the README.md file in our code submission.

B Use Cases for Non-Markovian Reward Modelling

The non-Markovian reward formulation applies to cases where rewards depend on hidden state
information ht in addition to environment states st and actions at, and this information is a function
of previous state-action pairs but not vice versa (i.e., there is no causal path from ht to st+k for any
k > 1). This crucial caveat distinguishes the formulation from the more general class of partially
observable MDPs and demarcates the set of domains to which it can be applied: those involving a
secondary Markovian system that “spectates” on events in the environment without intervening. In
the RM context, this secondary system is a black box (making its internal state ht hidden) and explicit
rewards are unavailable, being replaced by a sparser and potentially noisy form of reward-dependent
feedback (trajectory return labels in our work). Below we identify three classes of use case which fit
this technical specification and provide one concrete example for each:

Ambiguous Subtasks Cases involving an extended task with a sequential structure, where it is
hard to formally define the conditions for subtask completion, but RM is feasible because a human
“knows it when they see it”. Here, the hidden state to be learnt represents the current subtask and any
auxiliary information needed to determine its completion status.

• Concrete Example: Using judges’ scores to learn a performative display (e.g., gymnastics,
aerobatics) chaining several manoeuvres whose start and end conditions are difficult to
formalise a priori. This could be considered as an extension of the single backflip task
studied in the foundational RM work by Christiano et al. [12].

Dependencies on Subjective Affect Cases where a human’s reward function is dependent on
their affective (emotional) status, which in turn depends on their prior experiences. Assuming this
information is not directly available in the observed environment state, it must be inferred from data.

• Concrete Example: Using periodic satisfaction ratings to train a personal assistant robot
whose owner’s mood, needs and preferences vary from day to day. These variations may
influence the preferred driving style of a chauffeur service or choice of evening meal.

Irrationalities/Cognitive Biases Cases where one or more forms of bias colour a human’s post
hoc rating of an observed trajectory, even if their instantaneously-experienced reward is Markovian.
Psychological studies of how humans aggregate immediate rewards into retrospective evaluations of
the quality of an experience find that a straight summation assumption is unrealistic, with subjects
exhibiting high sensitivity to contrast effects and recency bias (collectively termed the peak-end rule)
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[26], and factoring in anticipated future states in addition to those actually observed [1]. Here, the
hidden state captures an aggregate representation of the biases at play in a given human’s evaluation.5

• Concrete Example: Using customer “star ratings” to improve a holiday planning agent
whose recommendations aim to account for an unknown mix of biases such as the peak-end
rule. The agent may use the learnt bias model to prioritise key moments in a holiday when
managing the travel schedule and budget, in order to maximise future customers’ star ratings.

Finally, we note that it is a matter of taste as to whether hidden state information is framed as
situated inside a human evaluator’s mind or in the environment but only visible to the human. It
is not technically necessary to decide between these two framings, as the mathematical problem
of non-Markovian RM is equivalent. From an agent’s perspective, a human evaluator is part of an
augmented environment, even if they never intervene directly to influence the state.

C Comparing Human and Oracle Labelling

Oracle-based experiments are often used to evaluate RM methods since they enable scalable quanti-
tative validation [14, 16, 33]. However, we identify three concrete differences between our oracle
preference labelling method and realistic human labelling: 1) preference form, 2) preference sparsity,
and 3) preference noise. Preference form is the different ways of providing labels; in this work
we used return values which are highly informative and easy to learn from, but it has long been
understood that humans find it easier to give less direct feedback, such as pairwise rankings [12]
or good/bad/neural labels [27]. Preference sparsity occurs when the time- and cost-expensiveness
of eliciting human labels reduces the proportion of data that can be labelled, and preference noise
arises from uncertainties in the human labelling process (as opposed to perfect oracle labelling). We
decided to focus on noise in this work as it is an established way of making oracle experiments more
realistic [28], and also fits in with our discussion of human uncertainties and cognitive biases. Our
experiments in Section 4.4 indicate that our methods degrade gracefully in the presence of noise,
which gives us some confidence that they will transfer well to human labels. However, future work
should consider preference sparsity and form, the latter of which will involve modifying the data
collection pipeline and loss function (e.g., to a contrastive loss in the case of pairwise rankings).
Beyond accounting for these three differences whilst still using oracle labels, the next step would be
to conduct evaluations using actual human labels.

D Preliminary Experiments on Toy Datasets

In this section, we give detail our preliminary experiments that were run on toy problems to initially
develop and validate our approach. Below we outline the datasets (Section D.1), models and training
hyperparameters (Section D.2), and results (Section D.3) of these experiments.

D.1 Datasets

We introduce three toy datasets, each abstracted from the RL context, to act as benchmark tests for
our models. Each of these datasets uses ordered bags comprised of two-dimensional instances, where
each instance has an associated label (called “reward” below, for consistency), and the overall bag
label (return) is the sum of the instance labels.

Toggle Switch An instance is the position of a toggle switch ts and a value v; if the switch is on
(ts = 1), then the reward for the instance is v; otherwise the reward for the instance is 0. Here, there

5A fascinating philosophical question arises here. When (following the method of Section 3.3) an RL agent
is trained using a non-Markovian RM model that captures a cognitive bias, should the agent learn to maximise
rewards including the bias (which, for example, might lead it to prioritise its peak and final reward rather than
seek uniformly good performance), or exluding it (which would revert to uniform prioritisation). This issue
of whether intelligent agents should seek to exploit human irrationalities when optimising for their revealed
preferences, or appeal to their unbiased “better angels”, relates to distinctions between first- and second-order
preferences [38] or between experienced and remembered (or decision) utility [7]. We defer this question to
those with more relevant expertise but note that regardless of the answer, it is essential to include the biases in
the reward model using a method such as the one proposed in this work.
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is no hidden information, as it is possible to calculate the reward for an instance from its contents
ts, v alone. This serves as a null example to elucidate what happens in a Markovian setting.

Push Switch We modify the toggle switch setup so that the instance now represents a push switch
(p = 1 if this switch is pressed), where pressing the switch flips a binary hidden state ts (the same
information as was previously represented by the toggle switch). This hidden state then determines
the reward as before (v if ts = 0, else 0). As ts must be tracked between successive instances, it
is not possible to determine the reward for an instance solely by observing its contents p, v, so this
setup is non-Markovian.

Dial We generalise the hidden state from a binary switch to a continuous-valued dial. Given an
instance m, v, the dial’s current value d is moved up or down by m. The reward is then given as d · v
The problem remains non-Markovian, but now the hidden state that needs tracking, d, is continuous
rather than discrete.

D.2 Models and Hyperparameters

When training the MIL models on the toy dataset, we used the Adam optimiser with a batch size of
one (i.e., one bag per batch) to minimise mean squared error (MSE) loss. Training was performed
using validation loss early stopping, i.e., if the validation loss did not decrease after a certain number
of training epochs (patience value), we terminated the training and selected the model at which
the validation loss was lowest. If the patience value was not reached (i.e., the validation loss kept
decreasing), we terminated training after a maximum number of epochs had been reached, and again
selected the model at which the validation loss was lowest. The hyperparameters for training the
models on each dataset (including learning rate (LR) and weight decay (WD)) are given in Table A1.
Dropout was not used. These hyperparameters were found through a small amount of trial and error,
i.e., no formal hyperparameter tuning was carried out.

Table A1: Toy dataset MIL training hyperparameters.

Dataset LR WD Patience Epochs

Toggle Switch 1× 10−4 1× 10−5 20 100
Push Switch 1× 10−3 0 30 150
Dial 1× 10−3 0 30 150

In Tables A2 to A5 we give the architectures for the MIL models we used in the toy dataset
experiments. The models are a combination of fully connected layers (FC) along with different MIL
pooling mechanisms. Rectified linear unit (ReLU) activation is applied to the FC hidden layers. We
label the layers based on the part of the network they belong to: feature extractor (FE), head network
(HN), or pooling (P); see Section 3.2. We also indicate the input and output sizes: b x n indicates an
input or output where there is a representation of length n for each of the b instances (b is the size of
the input bag).

Table A2: Toy Instance Space NN

Layer Type Input Output

1 (FE) FC + ReLU b x 2 b x 2
2 (HN) FC b x 2 b x 1
3 (P) mil-sum b x 1 1

Table A3: Toy Embedding Space LSTM

Layer Type Input Output

1 (FE) FC + ReLU b x 2 b x 2
2 (P) mil-emb-lstm b x 2 2
3 (HN) FC 2 1

D.3 Results

For each of the toy datasets, we generate 5000 random bags with between 10 and 20 instances per
bag (uniformly distributed). We use an 80/10/10 dataset split for training, validation, and testing,
and repeat our experiments with ten different variations of this split (so in total we have ten repeats
of each model type for each dataset). We show results for both return and reward reconstruction
for the toy datasets in Table A6. From these results, we can make several observations. Firstly, as
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Table A4: Toy Instance Space LSTM

Layer Type Input Output

1 (FE) FC + ReLU b x 2 b x 2
2 (P-1) mil-ins-lstm b x 2 b x 2
3 (HN) FC b x 2 b x 1
4 (P-2) mil-sum b x 1 1

Table A5: Toy CSC Instance Space LSTM

Layer Type Input Output

1 (FE) FC + ReLU b x 2 b x 2
2 (P-1) mil-csc-ins-lstm b x 2 b x 2
3 (HN) FC b x 2 b x 1
4 (P-2) mil-sum b x 1 1

expected, the Instance Space NN architecture only works on the Markovian Toggle Switch dataset,
i.e., it fails on the non-Markovian Push Switch and Dial datasets as it is unable to deal with temporal
dependencies. We also note that our two proposed architectures (Instance Space LSTM and CSC
Instance Space LSTM) outperform the baseline Embedding Space LSTM method on both return and
reward, with the CSC Instance Space LSTM model providing the best results overall. Finally, we
observe that a better return performance does not always guarantee better reward performance: for
the Dial dataset, the Instance Space LSTM makes better return predictions than the CSC Instance
Space LSTM model, but worse reward predictions. A similar outcome can be seen for the Embedding
Space LSTM and the Instance Space NN on the Push Switch dataset.

Table A6: Toy dataset return (top) and reward (bottom) results. Each measurement is the mean MSE
averaged over ten repeats, with the standard errors of the mean also given. Bold entries indicate the
best-performing model for each (metric, dataset) pair.

Model Toggle Switch Push Switch Dial Overall

Instance Space NN 0.030 ± 0.029 3.337 ± 0.054 5.489 ± 0.157 2.952
Embedding Space LSTM 0.008 ± 0.002 0.663 ± 0.194 0.434 ± 0.075 0.368
Instance Space LSTM 0.062 ± 0.058 0.262 ± 0.154 0.111 ± 0.014 0.145
CSC Instance Space LSTM 0.000 ± 0.000 0.140 ± 0.065 0.121 ± 0.043 0.087

Instance Space NN 0.002 ± 0.002 0.086 ± 0.001 0.954 ± 0.011 0.347
Embedding Space LSTM 0.003 ± 0.001 0.206 ± 0.100 0.244 ± 0.077 0.151
Instance Space LSTM 0.004 ± 0.004 0.021 ± 0.008 0.026 ± 0.004 0.017
CSC Instance Space LSTM 0.000 ± 0.000 0.012 ± 0.004 0.022 ± 0.007 0.011

E RL Task Details, Data Generation, and Model Hyperparameters

In this section, we give more detail on the reward reconstruction experiments for the RL tasks. First,
we give more information about the RL tasks (Section E.1), then explain how we generated datasets
from the tasks (Section E.2), and give the MIL model architectures and hyperparameters used in
the Timer, Moving, Key and Charger tasks (Section E.3), and the Lunar Lander task (Section E.4).
Finally, we discuss the limitations of our approach to using MIL RM for the Lunar Lander task
(Section E.5).

E.1 Task Details

The first four tasks are implemented in Python within a common 2D simulator following the OpenAI
Gym standard [9]. The agent’s position x, y is moved by one of five discrete actions: up, down,
left, right and no-op. In the first four cases, the position is moved by 0.1 in the specified direction.
The motion vector is then corrupted by zero-mean Gaussian noise with a standard deviation of 0.02
in both x and y and clipped into the bounds [0, 1]2. Zones of interest (spawn zones, treasure, key,
charger) are specified as rectangles lying within these bounds. At time t, the environment state st
(which is directly observed by the MIL RM models) is the 2D vector of the current position [xt, yt];
its dynamics are Markovian given the agent’s chosen action. The hidden state ht is the task-specific
information that renders the oracle’s reward function R Markovian:
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• Timer: h0 = 0 and ht+1 = δ(ht, st, at) = ht + 1; the hidden state simply tracks the
current timestep index. Reward is given by6

R(st, at, ht+1) = in_treasure(st) ·
{
−1 if ht+1 ≤ 50,
+1 otherwise,

where in_treasure([xt, yt]) = 1 if 0.4 ≤ xt ≤ 0.6 and 0.7 ≤ yt ≤ 0.9, and 0 otherwise.
• Moving: h0 = [0.4,−0.02], the initial horizontal position (left edge) and velocity of the

moving treasure rectangle. Hidden state dynamics encode the left-right oscillation:

ht+1 = δ(ht, st, at) =

[
h0t + h1t ,

{
h1t if 0 < (h0t + h1t ) < 0.8,
−h1t otherwise

]
.

Reward is given by R([xt, yt], at, ht+1) = 1 if ht+1 ≤ xt ≤ (ht+1 + 0.2) and 0.7 ≤ yt ≤
0.9, and 0 otherwise.

• Key: h0 = 0, indicating that the agent initialises without the key. The key collection
dynamics are encoded by

ht+1 = δ(ht, [xt, yt], at) =

{
1 if 0.4 ≤ xt ≤ 0.6 and 0.1 ≤ yt ≤ 0.3,
ht otherwise.

Reward is given by R(st, at, ht+1) = in_treasure(st) ·ht+1, where the in_treasure function
is the same as in the Timer task.

• Charger: h0 = 0, indicating an initial charge level of zero. The charging dynamics are
encoded by

ht+1 = δ(ht, [xt, yt], at) =

{
min(ht + 0.02, 1) if yt ≤ 0.3,
ht otherwise.

Reward is given identically to the Key task, R(st, at, ht+1) = in_treasure(st) · ht+1.

The Lunar Lander task is a modified version of the LUNARLANDERCONTINUOUS-V2 baseline
included as standard in the OpenAI Gym library [9]. We leave the state and action spaces unmodified.
The 8D state vector is [x, y, vx, vy, θ, θ̇, cl, cr], where x, y and vx, vy are the landing craft’s horizontal
and vertical positions and velocities, θ and θ̇ are its angle from vertical and angular velocity, and cl, cr
are two binary contact detectors indicating whether the left and right landing legs are in contact with
the ground. The 2D continuous action [um, us] is a pair of throttle values for two engines: main um
and side us. We also retain the default initialisation conditions (the lander spawns in a narrow zone
above the landing pad, with slightly-randomised orientation and velocities), the automatic termination
of episodes when |x| exceeds 1 (i.e., when the lander leaves the rendered screen area), and the physics
that determine how the lander responds to engine activations. However, we replace the standard
reward function with an oracle that rewards the agent for landing on the pad for up to 50 timesteps,
and then taking off again to hover within a target zone until an episode time limit (T = 500) is
reached. Rendering this two-stage objective Markovian requires a hidden state ht that tracks the
number of timesteps spent on the pad so far. Formally, reward is given by

R(st, at, ht+1) =

{
Rpad(st) +Rshaping(st, 0) if ht+1 < 50,
Rno_contact(st) +Rhover(st) +Rshaping(st, 1) otherwise,

where Rpad rewards the agent for being central with both legs on the ground (i.e., on the pad),

Rpad([xt, yt, v
x
t , v

y
t , θt, θ̇t, c

l
t, c

r
t ]) =

{
1 if − 0.2 ≤ xt ≤ 0.2 and clt = 1 and crt = 1,
0 otherwise,

Rno_contact rewards breaking leg-ground contact,

Rno_contact([xt, yt, v
x
t , v

y
t , θt, θ̇t, c

l
t, c

r
t ]) =

{
1 if clt = 0 and crt = 0,
0 otherwise,

6Note the timestep indices used here, which result from the order in which environment states, hidden states
and rewards are computed. At time t, the hidden state ht is first updated to ht+1 by δ(ht, st, at), then the reward
is computed as R(st, at, ht+1), and finally the environment state is updated to st+1 by D(st, at).
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Rhover rewards aerial positions in a target zone above the pad,

Rhover([xt, yt, v
x
t , v

y
t , θt, θ̇t, c

l
t, c

r
t ]) =

{
1 if − 0.5 ≤ xt ≤ 0.5 and 0.75 ≤ yt ≤ 1.25,
0 otherwise,

and Rshaping promotes slow, stable, central flight towards a target vertical position ytarget,

Rshaping([xt, yt, v
x
t , v

y
t , θt, θ̇t, c

l
t, c

r
t ], ytarget) =

0.1×max

(
2−

(√
(xt)2 + (yt − ytarget)2 +

√
(vxt )2 + (vyt )2 + |θt|+ |θ̇t|

)
, 0

)
.

The hidden state dynamics are

ht+1 =

{
min(ht + 1, 50) if Rpad(st) = 1,
ht otherwise,

with h0 = 0.

E.2 MIL Dataset Generation

We obtain datasets of several thousand trajectories per task, containing a wide distribution of outcomes
and return values, as follows. For each task k, we define a discrete trajectory classifier function
Ck : Ξ→ Ck and a limit pk on the proportion of trajectories in the dataset that are allowed to map to
each class in Ck. These are given as follows:

• Timer: Ctimer = num_neg × num_pos, where num_neg = {0..50} counts the number
of timesteps the agent spends in the treasure while its reward is negative (t ≤ 50), and
num_pos = {0..50} counts the number while the reward is positive (t > 50). The number
of classes is |Ctimer| = 512 = 2601 and the per-class limit is ptimer = 0.002.

• Moving: Cmoving = num_treasure, where num_treasure = {0..100} counts the timesteps
spent in the treasure. |Cmoving| = 101 and pmoving = 0.05.

• Key: Ckey = {no_key, key_no_treasure, treasure}, where the class is no_key if the key is
not collected, key_no_treasure if the key is collected but the treasure is not reached, and
treasure if the treasure is reached after collecting the key. |Ckey| = 3 and pkey is defined on a
per-class basis: 0.25 for no_key and key, and 0.5 for treasure.

• Charger: Ccharger = num_treasure × charge_bin, where num_treasure = {0..100} counts
the timesteps spent in the treasure and charge_bin = {1..20} is a binned representation of
the mean charge level when in the treasure (e.g., 0.0 maps to bin 1, 0.48 to bin 10, 0.96 to
bin 20). |Ccharger| = 2020 and pcharger = 0.002.

• Lunar Lander: Clunar = pad_bin × take_off × hover_bin, where pad_bin =
{0, {1..49}, 50+} is a binned representation of the number of timesteps spent on the landing
pad (i.e., zero, fewer than 50 or at least 50), take_off = {0, 1} is a binary indicator of whether
the lander takes off again after being on the pad, and hover_bin = {0, {1..19}, 20+} is a
binned representation of the number of timesteps spent in the hover zone after being on the
pad.7 |Clunar| = 18, of which 9 are actually realisable (e.g., the lander cannot take off from
the pad if it never reached it in the first place) and plunar = 0.2.

For k ∈ {timer,moving, key, charger}, a dataset Xk, is assembled iteratively. On each iteration, we
generate a length-100 trajectory, ξ, by sampling agent actions uniform-randomly from the action
space (up, down, left, right, no-op) and running them through the simulator. Once the trajectory is
complete, we evaluate its class Ck(ξ). If there are already at least pk × 5000 trajectories in Xk with
this class, ξ is discarded. Otherwise, it is added to Xk. This process repeats until |Xk| = 5000.

The state-action space for Lunar Lander is too large for a random generate-and-select algorithm
to terminate in any reasonable time. Instead, we recycle the length-500 trajectories generated as
a by-product of training the oracle-based RL baselines (black curves in Figure 5, plus six more
runs not included in the figure). Starting from a bank of 12000 trajectories, filtering based on the

7If the lander reaches the target of 50 timesteps on the pad, the time in the hover zone is measured from this
point onwards. Otherwise, it is measured from the first timestep that the lander leaves the pad.
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threshold plunar = 0.2 yields a final dataset Xlunar with 9762 trajectories. Although this approach
of relying on oracle-trained agents to generate data may initially appear to “put the cart before the
horse”, we suggest that it provides a valuable test of the ability of our MIL models to learn from
goal-directed (c.f. random) trajectories, and thus is a step closer to the online bootstrapping approach
of simultaneous RM and RL, which we aim to tackle in future work (see Section 5.3).

E.3 MIL Models and Hyperparameters

The MIL model training on the Timer, Moving, Key, and Charger tasks used the same process
as for the toy model training (see Section D.2). However, we also applied dropout (DO) in these
models. We give the MIL training hyperparameters for each of these tasks in Table A12. Again, the
hyperparameters were found through a small amount of trial and error, i.e., no formal hyperparameter
tuning was carried out.

Table A7: Timer, Moving, Key, and Charger task training hyperparameters.

Dataset LR WD DO Patience Epochs

Timer 5× 10−4 0 0.1 50 250
Moving 5× 10−4 0 0.1 50 250
Key 5× 10−4 0 0.1 30 150
Charger 5× 10−4 0 0.1 50 250

In Tables A8 to A11 we give the architectures for the MIL models we used in the Timer, Moving,
Key, and Charger tasks. As in the toy dataset experiments, the models are a combination of fully
connected layers (FC) along with different MIL pooling mechanisms. Rectified linear unit (ReLU)
activation is applied to the FC hidden layers. Again, we label the layers based on the part of the
network they belong to: feature extractor (FE), head network (HN), or pooling (P); see Section
3.2. We also indicate the input and output sizes: b x n indicates an input or output where there is a
representation of length n for each of the b instances (b is the size of the input bag). Input features
were normalised using mean/standard deviation scaling.

Table A8: RL Instance Space NN

Layer Type Input Output

1 (FE-1) FC + ReLU + DO b x 2 b x 64
2 (FE-2) FC + ReLU + DO b x 64 b x 32
3 (FE-3) FC + ReLU + DO b x 32 b x 32
4 (HN-1) FC + ReLU + DO b x 32 b x 32
5 (HN-2) FC + ReLU + DO b x 32 b x 16
6 (HN-3) FC b x 16 b x 1
7 (P) mil-sum b x 1 1

Table A9: RL Embedding Space LSTM

Layer Type Input Output

1 (FE-1) FC + ReLU + DO b x 2 b x 64
2 (FE-2) FC + ReLU + DO b x 64 b x 32
3 (FE-3) FC + ReLU + DO b x 32 b x 32
4 (P) mil-emb-lstm b x 32 2
5 (HN-1) FC + ReLU + DO 2 32
6 (HN-2) FC + ReLU + DO 32 16
7 (HN-3) FC 16 1

Table A10: RL Instance Space LSTM

Layer Type Input Output

1 (FE-1) FC + ReLU + DO b x 2 b x 64
2 (FE-2) FC + ReLU + DO b x 64 b x 32
3 (FE-3) FC + ReLU + DO b x 32 b x 32
4 (P-1) mil-ins-lstm b x 32 b x 2
5 (HN-1) FC + ReLU + DO b x 2 b x 32
6 (HN-2) FC + ReLU + DO b x 32 b x 16
7 (HN-3) FC b x 16 b x 1
8 (P-2) mil-sum b x 1 1

Table A11: RL CSC Instance Space LSTM

Layer Type Input Output

1 (FE-1) FC + ReLU + DO b x 2 b x 64
2 (FE-2) FC + ReLU + DO b x 64 b x 32
3 (FE-3) FC + ReLU + DO b x 32 b x 32
4 (P-1) mil-csc-ins-lstm b x 32 b x 2
5 (HN-1) FC + ReLU + DO b x 34 b x 32
6 (HN-2) FC + ReLU + DO b x 32 b x 16
7 (HN-3) FC b x 16 b x 1
8 (P-2) mil-sum b x 1 1
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E.4 Lunar Lander MIL Models and Hyperparameters

There are several differences between the MIL training process for the Lunar Lander task and the
other four RL tasks (see Appendix E.3). Firstly, the reward targets (and as such, return targets) were
scaled down by a factor of 100 in order to avoid extremely large gradients from high prediction
targets. For example, a trajectory with an original return of 700 would have a scaled return of 7.
Secondly, the input data was scaled linearly between -0.5 and 0.5 (using the minimum and maximum
range of each feature). This was found to give more consistent feature ranges than mean/standard
deviation scaling as was used in the other tasks (this was due to large outliers in certain features,
e.g., the rotational features were largely clustered around 0, but had extreme values up to ± 90). We
give the training hyperparameters for the lunar lander environment in Table A12. Again, no formal
hyperparameter tuning was carried out, so better performance of these models could potentially be
achieved with better parameters (including shorter training times with a higher learning rate).

Table A12: Lunar Lander MIL training hyperparameters.

Dataset LR WD DO Patience Epochs

Lunar Lander 1× 10−4 0 0 30 200

We used similar architectures to the other four RL tasks (see Appendix E.3), but with larger layers;
see Tables A13 through A16. However, the depth of the models remained the same, as did the size
of the hidden state embedding. Also note the addition of the Leaky ReLU activation function in the
head networks, which we discuss further in Appendix E.5.

Table A13: Lunar Lander Instance Space NN

Layer Type Input Output

1 (FE-1) FC + ReLU + DO b x 2 b x 128
2 (FE-2) FC + ReLU + DO b x 128 b x 64
3 (FE-3) FC + ReLU + DO b x 64 b x 64
4 (HN-1) FC + ReLU + DO b x 64 b x 64
5 (HN-2) FC + ReLU + DO b x 64 b x 32
6 (HN-3) FC + Leaky ReLU b x 32 b x 1
7 (P) mil-sum b x 1 1

Table A14: Lunar Lander Emb. Space LSTM

Layer Type Input Output

1 (FE-1) FC + ReLU + DO b x 2 b x 128
2 (FE-2) FC + ReLU + DO b x 128 b x 64
3 (FE-3) FC + ReLU + DO b x 64 b x 64
4 (P) mil-emb-lstm b x 64 2
5 (HN-1) FC + ReLU + DO 2 64
6 (HN-2) FC + ReLU + DO 64 32
7 (HN-3) FC + Leaky ReLU 32 1

Table A15: Lunar Lander Ins. Space LSTM

Layer Type Input Output

1 (FE-1) FC + ReLU + DO b x 2 b x 128
2 (FE-2) FC + ReLU + DO b x 128 b x 64
3 (FE-3) FC + ReLU + DO b x 64 b x 64
4 (P-1) mil-ins-lstm b x 64 b x 2
5 (HN-1) FC + ReLU + DO b x 2 b x 64
6 (HN-2) FC + ReLU + DO b x 64 b x 32
7 (HN-3) FC + Leaky ReLU b x 32 b x 1
8 (P-2) mil-sum b x 1 1

Table A16: Lunar Lander CSC Ins. Space LSTM

Layer Type Input Output

1 (FE-1) FC + ReLU + DO b x 2 b x 128
2 (FE-2) FC + ReLU + DO b x 128 b x 64
3 (FE-3) FC + ReLU + DO b x 64 b x 64
4 (P-1) mil-csc-ins-lstm b x 64 b x 2
5 (HN-1) FC + ReLU + DO b x 66 b x 64
6 (HN-2) FC + ReLU + DO b x 64 b x 32
7 (HN-3) FC + Leaky ReLU b x 32 b x 1
8 (P-2) mil-sum b x 1 1

E.5 Lunar Lander MIL Discussion

In Table 1, we present results for Lunar Lander using only the top five performing models by reward
MSE (50% of all models). In this section, we discuss why this is the case.

When training the Lunar Lander architectures with linear activation functions in the head networks,
we found that the models were struggling to learn the correct return predictions as they were
making negative reward predictions. We know a priori that the Lunar Lander task only has positive
rewards, therefore we added a Leaky ReLU activation (with a negative slope of 1× 10−6) to each
architecture’s head network to encourage positive predictions. This led to an immediate improvement
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in performance for all model architecture (excluding the Instance Space NN baseline, but this was
expected to fail on this task as it cannot model temporal dependencies).

However, we found that a proportion of model initialisations remained unable to overcome a certain
local minimum during training (corresponding to a return prediction MSE of around 2.1). In other
cases, after this threshold was passed, the model performance would rapidly improve. Note this
problem occurred in each of the LSTM-based models (the Instance Space NN architecture was never
observed to pass this threshold). Therefore, we focus our evaluation on the top 50% of models, which
is equivalent to discarding the worse-performing models, the majority of which had not passed the
problematic threshold during training.

We investigate this training issue further in Figure A1, focusing specifically on the CSC Instance
Space LSTM models. Although the Leaky ReLU activation encourages models to make positive
predictions, we can see that it does not prevent them entirely. Furthermore, the models that are
not able to cross the return threshold of 2.1 tend to output a greater proportion of negative reward
predictions. We thus hypothesise that a better mechanism for preventing negative reward prediction
would increase the chance that a given model training run achieves a return loss of less than 2.1.
Below we list several such mechanisms as alternatives to our current Leaky ReLU approach.

Figure A1: An analysis of the negative reward prediction of the ten Lunar Lander CSC Instance Space
LSTM models trained in this work. Note we observed similar trends for the Embedding Space LSTM
and Instance Space LSTM models. Left: Models that are able to cross the return loss threshold of 2.1
make fewer negative reward predictions (given here as a percentage of all reward predictions) than
those that cannot. Middle: As the number of negative reward predictions increases, so too does the
standard deviation of the reward predictions. In order to sum to the correct return predictions, the
positive reward predictions must increase to compensate for the negative reward predictions, leading
to a larger variance, and ultimately worse reward prediction. Right: The standard deviation of the
reward predictions also highlights the loss threshold of 2.1, although not as clearly as the percentage
of negative reward predictions.

Replace Leaky ReLU with ReLU One option to remove negative reward predictions entirely is to
use ReLU rather than Leaky ReLU in the final activation function of the head networks. However, in
the case that all the reward predictions are negative, the gradient of the network will be zero, so no
learning can take place. The ability of the network to learn is entirely dependent on achieving at least
one positive prediction in order to generate non-zero gradients, which is determined by the initial
network weights. This could potentially be overcome with different network initialisation approaches,
or by simply discarding training runs that fail to begin to learn.

Replace Leaky ReLU with Sigmoid Instead of using a Leaky ReLU or ReLU activation in the head
network, the Sigmoid activation function could be used. This would overcome the gradient issue
presented with the use of ReLU, and would ensure that no negative rewards are predicted. However,
this would require a priori knowledge of the maximum reward target in order to scale the network
outputs correctly, and the non-linear activation could make accurate prediction of rewards more
difficult in some cases.

Remove target normalisation A further approach to reduce the number of negative reward predic-
tions would be to remove, or at least reduce, the reward target scaling. As discussed above, this
was initially included to avoid very large gradients. However, reducing this scaling would move the
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average reward prediction away from zero, potentially reducing the number of negative predictions.
Care would have to be taken to not reintroduce the large gradient problem.

Regularise reward prediction variance A final alternative approach could be to introduce an
additional loss term that encourages the reward predictions to have low variance. This would deter
a large range of reward predictions, leading indirectly to fewer negative reward predictions (see
Figure A1). However, this approach is only applicable to the LSTM models that produce instance
predictions, i.e., it cannot be used with the Embedding Space LSTM network as that architecture
does not produce reward predictions during training. Furthermore, this would result in an additional
hyperparameter that requires tuning (a coefficient for the new loss term).

F Further Details on RL Agent Training

Adopting OpenAI Gym terminology [9], non-Markovian reward functions (both ground truth oracles
and learnt LSTM-based models) are implemented as wrappers on rewardless base environments.
The role of a wrapper is to track the hidden state of either the oracle or the LSTM throughout an
episode and use this to compute rewards to return to the agent. In the “Oracle (without hidden state)”
baseline, we return the raw environment state (e.g., the 2D position [xt, yt]) to the agent unmodified.
Otherwise, we concatenate the post-update hidden state ht+1 onto the end of the environment state,
thereby expanding the state space from the agent’s perspective and making rewards Markovian.

This wrapper-based approach allows us to use a completely vanilla RL algorithm. For the 2D
navigation tasks, we use a Deep Q-Network (DQN) agent [31] with the double Q-learning trick [43]
enabled. For Lunar Lander, which has a continuous action space, we use Soft Actor-Critic (SAC)
[15]. In both cases we use a value network with ReLU activation functions, which is updated on
every timestep by sampling batches of size 128 from a replay buffer. Bellman updates use a discount
factor of γ = 0.99 and are implemented by the Adam optimiser with a learning rate of 1e−3. A target
network tracks the primary one by Polyak averaging of parameters with a coefficient of 5e−3 per
timestep. Additional hyperparameters are given below:

• 2D tasks (DQN): number of training episodes = 400; replay buffer capacity = 5e4; value
network hidden layer sizes = [256, 128, 64]; policy greediness ε linearly decayed from 1 to
0.05 over the first 200 episodes and held constant thereafter.

• Lunar Lander (SAC): number of training episodes = 800; replay buffer capacity =
1e5; value/policy network hidden layer sizes = [256, 256]; policy entropy regularisation
coefficient α = 0.2; policy updates with Adam optimiser (learning rate 1e−4).

G Trajectory Probing for Other RL Tasks

In this section, we provide additional trajectory probing plots (like Figure 9) for the Timer (Figure
A2), Moving (Figure A3), Key (Figure A4), and Lunar Lander (Figure A5) tasks. As before, in
these probing plots, we analyse the best-performing CSC Instance Space LSTM model for each task
(according to the reward reconstruction metric).
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Figure A2: Timer task trajectory probing.
Top: Predicted reward with respect to time and position. We observe that the model has correctly
captured the transition from negative to positive reward in the treasure region at t = 50, with no
reward outside of this region. Although the reward is positive at t = 50, the model is uncertain at this
point, i.e., the transition from negative to positive reward happens over two timesteps rather than one.
Middle/bottom: Four trajectory probes demonstrating the model’s hidden state transitions. “xn”
labels indicate the agent remaining in a position for n timesteps.
Optimal: The agent moves into the treasure region at t = 50 and remains there, receiving the
maximum possible reward.
Too Late: The agent moves into the treasure region a while after the treasure has already become
positive, i.e., it is missing out on reward by not being in the region for as long as possible. This is
reflected in the hidden state plot, where the state transitions from the orange to the red region after
the t = 50 boundary.
Too Early: The agent moves into the treasure region before the treasure becomes positive, therefore,
while it earns the maximum amount of positive reward, it also earns negative reward, leading to a
sub-optimal result.
Challenging: The agent moves into the treasure region at the correct time, but proceeds to jump in
and out of the treasure region before settling, leading to lost reward. The hidden state trajectories
somewhat mimic this movement by transitioning between the orange and red regions, although the
jumps are less clear near to the t = 50 transition point, suggesting the model is uncertain at this point.
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Figure A3: Moving task trajectory probing.
Top: The predicted reward with respect to time (and thus implicitly, the position of the treasure
region). The model has learnt to track the treasure region as it moves, although there is noise around
the left and right edges of the region, highlighting the difficulty of recovering the treasure region’s
horizontal position exactly.
Middle/bottom: Four trajectory probes showing the model’s hidden state transitions. Note the green
dotted region indicates the overall boundary of the treasure region, i.e., the treasure lies somewhere
within that boundary, with its true horizontal position dependent on time. “xn” labels indicate the
agent remaining in a position for n timesteps.
Optimal Left: The agent moves within the treasure region as quickly as possible and then moves with
the treasure (keeping within it) for the remainder of the episode. The hidden state trajectories follow
the “In” regions (green and red).
Optimal Right: A similar optimal probe where the agent starts from the right-hand spawn zone rather
than the left. In this case, the agent has further to move before moving into the treasure region,
leading to slightly less overall reward than when it starts from the left.
Static: Rather than moving with the treasure region, the agent stays still and allows the treasure to
pass over it, gaining reward for some timesteps but not others. We observe that the hidden state
trajectory also reflects this — the state transitions between the “In” and “Out” regions.
Challenging: The agent takes a while to move towards the treasure region, and then passes in and out
of the boundary in which the treasure resides, picking up some reward. We can see from the hidden
state trajectory that this motion is captured in the hidden states — the trajectory transitions between
the orange and red regions as the agent passes back and forth through the treasure region.
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Figure A4: Key task trajectory probing.
Top: The predicted reward with respect to time and collection of the key. The model has learnt to
only give reward when the agent is in the treasure region after collecting the key.
Middle/bottom: Four trajectory probes showing the model’s hidden state transitions. “xn” labels
indicate the agent remaining in a position for n timesteps.
Optimal Left: The agent collects the key as quickly as possible, and then proceeds to move into the
treasure region and wait there until the end of the episode. The hidden state trajectory shows two
notable transitions, first when the key is collected (blue to orange) and then when the agent enters the
treasure region (orange to red).
Optimal Right: A similar optimal policy, but from the right-hand spawn zone rather than the left.
Note the hidden state trajectory is very similar, apart from the initial hidden state, which is at the
opposite side of the blue region, representing the different spawn position.
Suboptimal: The agent passes through the treasure region before collecting the key, and then follows
an optimal policy. We observe a transition in the hidden state trajectory from the blue to the green
region that corresponds to the agent’s premature entrance into the treasure region.
Failure case: The agent enters the treasure region without collecting the key and remains there for the
rest of the episode. This highlights a failure case of the model, where the hidden state “drifts” from
the green region to the red region, i.e., the model convinces itself that the agent must have picked
up the key at some point. Such causal confusion errors are well-documented in the RM literature
[40]. In our case, we suspect that the error is due to a bias in our data generation method inducing a
correlation between key possession and time spent in the treasure region. As described in Appendix
E.2, we specifically screen for trajectories where the treasure is visited with the key (the “treasure”
class) but not for those where it is visited without it. There are thus likely to be very few training
trajectories that spend a lot of time in the treasure region without collecting the key, making this probe
an extreme outlier on which performance is poor. Adding and selecting for a fourth “key_no_treasure”
class during data generation may have mitigated this issue.
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Figure A5: Lunar Lander task trajectory probing.
Top: The predicted reward with respect to the agent’s position and the length of time that it has been
on the pad. The model has learnt to reward the agent for landing on the pad when it has not previously
landed, and then reward it for taking off and remaining in the hover zone after 50 timesteps on the
pad, as per the oracle. However, observe how the top half of the hover zone is attributed higher reward
than the lower half. This feature is not present in the oracle (which rewards the entire hover zone
equally) but makes great practical sense, as a stochastic policy is less likely to drop out of the zone
under the effect of gravity if it remains some distance from the bottom edge. Also note the small
negative rewards near the environment boundaries, which disincentivise positions with a high risk
of leading to early termination, and the “funnel” of intermediate positive reward, which may help
to guide the agent up from the pad to the hover zone. Collectively, these deviations from the oracle
reward function could actually be seen as improvements, and explain why we observe significantly
higher performance on the Rhover reward component when the CSC Instance Space LSTM reward
model is used, compared with using the oracle itself.
Middle/bottom: Four trajectory probes showing the model’s hidden state transitions.
Correct: The agent lands on the pad as quickly as possible, waits for 50 timesteps, and then takes off
again and hovers in the hover zone. The hidden state trajectory shows a transition from right to left
once the agent has been on the pad for long enough. It also clearly shows the agent is in the Hovering
hidden state region.
No Hover: In this trajectory, the agent remains on the pad for too long and does not enter the hover
zone. It has a similar hidden state transition to the Correct trajectory but does not enter the Hovering
hidden state region.
Too Short: The agent lands on the pad but does not stay there for the required 50 timesteps. In this
particular case, the agent lands correctly but then slips out of the landing pad, coming to rest on
a different area of terrain until the end of the trajectory. In the hidden state trajectory, there is no
transition from the right side to the left side, matching the idea that the agent has not remained on the
pad for long enough.
Never Landed: The agent does not land on the pad at all. In this particular example, the agent reaches
the boundary of the environment, which causes the episode to terminate early. Similar to the Too
Short example, the hidden state trajectory does not transition from right to left.
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