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ABSTRACT

In Multiple Instance Learning (MIL), models are trained using bags of instances,
where only a single label is provided for each bag. A bag label is often only
determined by a handful of key instances within a bag, making it difficult to in-
terpret what information a classifier is using to make decisions. In this work, we
establish the key requirements for interpreting MIL models. We then go on to de-
velop several model-agnostic approaches that meet these requirements. Our meth-
ods are compared against existing inherently interpretable MIL models on several
datasets, and achieve an increase in interpretability accuracy of up to 30%. We
also examine the ability of the methods to identify interactions between instances
and scale to larger datasets, improving their applicability to real-world problems.

1 INTRODUCTION

In Multiple Instance Learning (MIL), data is organised into bags of instances, and each bag is given
a single label. This reduces the burden of labelling, as each instance does not have to be assigned a
label, making it useful in applications where labelling is expensive, such as healthcare (Carbonneau
et al., 2018). However, there are often only a few key instances within a bag that determine the bag
label, so it is necessary to identify these key instances in order to interpret a model’s decision-making
(Liu et al., 2012). Directly interpreting the decision-making process of machine learning methods is
difficult due to the complexity of the models and the scale of the data on which they trained, so there
is a need for methods that allow insights into the decision-making processes (Gilpin et al., 2018).

In MIL problems, only some of the instances in each bag will be discriminatory, i.e., a significant
number of the instances in a bag will be non-discriminatory or even related to other bag classes
(Amores, 2013). Identifying the important instances and presenting those as the interpretation of
model decision-making filters out the non-discriminatory information and provides the explainee
with a reduced and relevant interpretation, which will avoid overloading the user (Li et al., 2015).
Our work provides the following novel contributions:

1. MIL interpretability definition We identify two questions that interpretability methods
for MIL should be able to answer: 1) Which are the key instances for a bag? 2) What
outcome (class/value) does each key instance support? In the rest of this work, we will refer
to these two questions as the which and the what questions respectively. As we explore in
Section 2, existing interpretability methods are able to answer which questions with varying
degrees of accuracy, but can only answer what questions under certain assumptions.

2. MIL model-agnostic interpretability methods Existing interpretability methods are of-
ten model-specific, i.e., they can only be applied to certain types of MIL models. To this
end, we build upon the state-of-the-art MIL inherent interpretability methods by develop-
ing model-agnostic interpretability methods that are up to 30% more more accurate. The
model-agnostic interpretability methods that we propose can be applied to any MIL model,
and are able to answer both which and what questions.

3. MIL interpretability method comparison We compare existing model-specific methods
with our model-agnostic methods on several MIL datasets. Our experiments are also carried
out on four types of MIL model, giving a comprehensive comparison of interpretability
performance. To the best of the authors’ knowledge, this is one of the first studies to
compare different interpretability methods for MIL.1

1Source code for this project is available at https://github.com/JAEarly/MILLI.
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The remainder of this work is laid out as follows. Section 2 provides relevant background knowledge
and reviews existing MIL interpretability methods. Section 3 outlines the requirements for MIL
interpretability and details our approaches that meet these requirements. Next, Section 4 provides
our results and experiments. Section 5 discusses our findings, and Section 6 concludes.

2 BACKGROUND AND RELATED WORK

The standard MIL assumption (SMIL) is a binary problem with positive and negative bags (Di-
etterich et al., 1997; Maron & Lozano-Pérez, 1998). A bag is positive if any of its instances are
positive, otherwise it is negative. The assumptions of SMIL can be relaxed to allow more gener-
alised versions of MIL, e.g., through extensions that include additional positive classes (Scott et al.,
2005; Weidmann et al., 2003). SMIL also assumes there is no interaction between instances. How-
ever, recent work has highlighted that modelling relationships between instances is beneficial for
performance (Tu et al., 2019; Zhou et al., 2009). Existing methods for interpreting MIL models
often rely on the SMIL assumption, so cannot generalise to other MIL problems. In addition, exist-
ing methods are often model-specific, i.e., they only work for certain types of MIL models, which
constrains the choice of model (Ribeiro et al., 2016a). Identifying the key instances in MIL bags is a
form of local interpretability (Molnar, 2020), as the key instances are detected for a particular input
to the model. Two of the key motivators for interpreting the decision-making process of a MIL sys-
tem are reliability and trust — identifying the key instances allows an evaluation of the reliability of
the system, which increases trust as the decision-making process becomes more transparent. In this
work, we use the term interpretability rather than explainability to convey that the analysis remains
tied to the models, i.e., these methods do not provide non-technical explanations in human terms.

Under the SMIL assumption, which and what questions are equivalent — there are only two classes
(positive and negative), and the only key instances are the instances that are positive, therefore once
the key instances are identified, it is also known what outcome they support. However, when there
are multiple positive classes, if instances from different classes co-occur in the same bags, answering
which and what questions becomes two distinct problems. For example, some key instances will
support one positive class, and some key instances will support another. Therefore, solely identifying
which are the key instances does not answer the second question of what class they support. Existing
methods, such as key instance detection (Liu et al., 2012), MIL attention (Ilse et al., 2018), and MIL
graph neural networks (GNNs; Tu et al. (2019)) do not condition their output on a particular class,
so it is not apparent what class each instance supports, i.e., they can only answer which questions.
One existing method that can answer what questions is mi-Net (Wang et al., 2018), as it produces
instance-level predictions as part of its processing. However, these instance-level predictions do
not take account of interactions between the instances, so are often inaccurate. A related piece
of work on MIL interpretability is Tibo et al. (2020), which considers interpretability within the
scope of multi-multi-instance learning (MMIL; Tibo et al. (2017); Fuster et al. (2021)). In MMIL,
the instances within a bag are arranged into into further bags, giving a hierarchical bags-of-bags
structure. The interpretability techniques presented by Tibo et al. (2020) are model-specific as they
are only designed for MMIL networks. In this work, we aim to overcome the limitations of existing
methods by developing model-agnostic methods that can answer both which and what questions.

In single instance supervised learning, model-agnostic techniques have been developed to interpret
models. Post-hoc local interpretability methods, such as Local Interpretable Model-agnostic Ex-
planations (LIME; Ribeiro et al. (2016b)) and SHapley Additive exPlanations (SHAP; Lundberg &
Lee (2017)), work by approximating the original predictive model with a locally faithful surrogate
model that is inherently interpretable. The surrogate model learns from simplified inputs that rep-
resent perturbations of the original input that is being analysed. In this work, one of our proposed
methods is a MIL-specific version of this approach.

3 METHODOLOGY

At the start of this section, we outline the requirements for MIL interpretability (Section 3.1). In
Section 3.2, we propose three methods that meet these requirements under the assumption that there
are no interactions between instances (independent-instance methods). In Section 3.3 we remove
this assumption and propose our local surrogate model-agnostic interpretability method for MIL.
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3.1 MIL INTERPRETABILITY REQUIREMENTS

A general MIL classification problem has C possible classes, with one class being negative and the
rest being positive. This is a generalisation of the SMIL assumption, which is a special case when
C = 2. An interpretability method that can only provide the general importance of an instance
(without associating it with a particular class) can only answer which questions. In order to answer
what questions, the method needs to state which classes each instance supports and refutes. For-
mally, for a bag of instances X = {x1, . . . , xk} and a bag classification function F , we want to
assign a value to each instance that represents whether it supports or refutes a class c:

I(X,F, c) = {φ1, . . . , φk}
where I is the interpretability function and φi ∈ R is the interpretability value for instance i with
respect to class c. Here, we assume that φi > 0 means instance i supports class c, φi < 0 implies
instance i refutes class c, and the greater |φi|, the greater the importance of instance i. For some
existing methods, such as attention, φi is the same for all classes, and φi ≥ 0 in all cases, so these
requirements are not met. We later demonstrate these limitations in Section 5. In the next two
sections we propose several model-agnostic methods that satisfy these requirements.

3.2 DETERMINING INSTANCE ATTRIBUTIONS

In this section, we propose three model-agnostic methods for interpreting MIL models under the
assumption that the instances are independent. This means we can observe the effects of each in-
stance in isolation without worrying about interactions between the instances. We exploit a property
of MIL models: the ability to deal with different sized bags. As MIL models are able to process
bags of different sizes, it is possible to remove instances from the bags and observe any changes
in prediction, allowing us to understand what instances are responsible for the model’s prediction.
Below, we propose three methods that use this property to interpret a model’s decision making.

Single Given a bag of instances X = {x1, . . . , xk} and a bag classification function F , we can
take each instance in turn and form a single instance bag: Xi = {xi} for i ∈ {1, . . . , k}. We then
observe the model’s prediction on each single instance bag φi = Fc(Xi), where Fc is the output of F
for class c (i.e., the cth entry in the output vector of F (Xi)). A large value for φi suggests instance xi
supports c, and a value close to zero suggest it has no effect with respect to class c. If we repeat this
over all instances and all classes, we can build a picture of the classes that each instance supports,
allowing us to answer what questions. However, this method cannot refute classes (i.e., φi ≥ 0 in
all cases). It should be noted that this method gives the same outputs as the inherent interpretability
of mi-Net (Wang et al., 2018), but here it is a model-agnostic rather than a model-specific method.

One Removed A natural counterpart to the Single method is the One Removed method, where
each instance is removed from the complete bag in turn, i.e., we form bags Xi = X \ {xi}. For a
particular class c, we can then observe the change in the model’s prediction caused by removing xi
from the bag: φi = Fc(X)−Fc(Xi). If the prediction decreases, xi supports c, and if it increases, xi
refutes c, i.e., this method is able to both support and refute different classes. However, if there are
other instances in the bag that support or refute class c, we may not observe a change in prediction
when xi is removed, even if xi is a key instance.

Combined In order to access the benefits of both the Single and One Removed methods, we can
combine their outputs. A simple approach is to take the mean, i.e., φi = 1

2 [Fc({xi}) + Fc(X) −
Fc(X \{xi})]. This method can identify the important instances revealed by the Single method, and
also refute outcomes as revealed by the One Removed method.

With these three methods, it is assumed that there are no interactions between the instances. This
is not true for all datasets, therefore, in the next section, we remove this assumption and propose a
further method that is able to deal with the interactions between instances.

3.3 DEALING WITH INSTANCE INTERACTIONS

In order to calculate instance attributions whilst accounting for interactions between instances, we
have to consider the effect of each instance within the context of the bag. With instance interactions,
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the co-occurrence of two (or more) instances changes the bag label from what it would be if the
two instances were observed independently. The instances have different meanings depending on
the context of the bag, i.e., on their own they mean something different to what they mean when
observed together. One way to uncover these instance interactions is to perturb the original input
to the model and observe the outcome. In the case of MIL, these perturbations can take the form
of removing instances from the original bag. By sampling coalitions of instances, and fitting a
weighted linear regression model against the coalitions and their respective model predictions, it is
possible to construct a surrogate locally faithful interpretable model that accounts for the instance
interactions in the original bag. A coalition is a binary vector z ∈ {0, 1}k that represents a subset
S = {xi|zi = 1}, so the number of ones in the coalition |z| is equal to the length of the S. The
surrogate model gc takes the form

gc(z) = φ0 +

k∑
i=1

φizi, (1)

where each coefficient φi ∈ {φ1, . . . , φk} is the importance attribution for each instance xi ∈ X
with respect to class c. Given a collection of n coalitions Z, minimising the loss function

L(Fc, gc, π) =
∑
z∈Z

[Fc(S)− gc(z)]2π(z), (2)

means gc is a locally faithful approximation of the original model F for class c. The loss function is
weighted by a kernel π, which determines how important it is for gc to be faithful for each individual
coalition. Here, gc only approximates F for class c, i.e., to produce interpretations for a bag with
respect to all classes, a surrogate model needs to be fit for each class. Similar approaches have been
applied in single instance supervised learning in methods such as LIME and KernelSHAP. Both use
different choices for π: LIME employs l2 or cosine distance, and KernelSHAP uses a weighting
scheme that approximates Shapley values (Shapley, 1953). For single instance supervised learning
models, when perturbing the inputs, it is not possible to simply ‘remove’ a feature from an input as
the models expect fixed-size inputs — either a new model has to be re-trained without that particular
feature, or appropriate sampling from other data has to be undertaken, which can lead to unrealistic
synthetic data. In MIL, as models are able to deal with different size bags, instances can be removed
from the bags without the need for re-training or sampling from other data, meaning these issues do
not occur in our setting.

While it is possible utilise the weight kernels from LIME and KernelSHAP for MIL, we identify
a significant drawback with both methods. Their choice for π weights all coalitions of the same
size equally, i.e., they do not consider the content of the coalitions, only their size. Just because
two coalitions are of the same size does not mean it is equally important that the surrogate model is
faithful to both of them. Furthermore, the sampling strategies of both approaches lead to very large
(|z| close to 1) or very small coalitions (|z| close to 0). Unless the number of samples n is very large,
samples of average size (|z| close to 0.5) will not be chosen. As we see in Section 4.4, this approach
to sampling is appropriate for some datasets, but not for others.

We aim to overcome both of these drawbacks with our own MIL-specific choice of weight kernel and
sampling approach. Below, we propose Multiple Instance Learning Local Interpretations (MILLI).
At the core of our approach is a new method for weighting coalitions based on an initial ranking of
instance importances ri ∈ {r1, . . . , rk}. For a coalition z and ranking of instance importances r, we
define our weight kernel πM as:

πM(z, r) =
1

|z|

k∑
i=0

zi πR(ri), (3)

where πR(ri) =

{
(2α− 1)(1− ri

k )e
−β̂ri + 1− α, if β̂ ≥ 0,

(1− 2α)(1 + ri−k
k )e|β̂|(ri−k) + α, otherwise,

(4)

and β̂ =

{
β, if α < 0.5,

−β, otherwise.

πR is a function that weights instances based on their order in the ranking. Its two hyperparameters,
α ∈ [0, 1] and β ∈ (−∞,∞) define the shape of the function, and ultimately determine the kernel
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πM . The value of α dictates whether the sampling should be biased towards instances that are highly
ranked or not: α > 0.5 means πR is biased towards instances higher in ordering, and α < 0.5 means
πR is biased towards values lower in the ordering. The value of β is discussed below, as it becomes
important when sampling coalitions. We provide an illustration of πR in Figure 1.

Figure 1: The effect of α and β on πR (Equation 4).

In πM , the coalition z is weighted on its content rather than its length, i.e., the distance between
a subset and a bag is no longer determined simply by the number of instances removed. This is
beneficial, as removing many non-discriminatory instances from the bag likely means the label of
the bag remains the same, despite being different in size. Conversely, removing one discriminatory
instance could change the bag label, even though the bag is only one instance smaller. As well as
using πR in the weight kernel, we also utilise it to sample coalitions. We can consider the problem
of sampling as a repeated coin toss, where P (zi = 1) = pi and P (zi = 0) = 1 − pi. In equal
random sampling, every value pi ∈ {p1, . . . , pk} is equal to 0.5, meaning E[|z|] = 0.5k. However,
it is possible to improve upon equal random sampling by changing the value of p for each instance
in bag, i.e., we can change the likelihood of each instance being involved in a coalition. To sample
more informative coalitions, we set pi = πR(ri), meaning E[|z|] =

∫ k
0
πR dr:

E[|z|] =

{
2α−1
kβ̂2

(e−β̂k + β̂k − 1) + k(1− α), if β̂ ≥ 0,

1−2α
kβ̂2

(e−β̂k + β̂k − 1) + kα, otherwise.
(5)

If β < 0, the sampling is biased towards smaller coalitions, and if β > 0, the sampling is biased
towards larger coalitions. The maximum and minimum E[|z|] is controlled by α. When α = 0.5 or
β = 0, every value pi ∈ {p1, . . . , pk} is equal to 0.5, meaning we have equal random sampling as
described above. We provide an illustration of how E[|z|] changes in Figure 2.

Figure 2: The effect of α and β on E[|z|] (Equation 4). We give the expected coalition size as a
proportion of the bag size, i.e., E[|z|]/k.

The final part of MILLI is how to determine the initial ranking of importances. For this, we can use
the Single method from Section 3.2, which produces values {φ1, . . . , φk}, and we convert this to an
instance ranking: the new values {r1, . . . , rk} represent the position for instance i in {φ1, . . . , φk}
(e.g., the instance with the greatest value for φ has r = 0). MILLI is more expensive to compute
that the methods outlined in Section 3.2: O(Cnk2) compared with O(Ck). However, when there
are interactions between the instances, this extra complexity is required in order to build a better un-
derstanding of the classes that each instance supports and refutes, allowing more accurate answering
of what questions. It is important to note that MILLI is indeed model agnostic — it only requires
access to the bag classification function F , and makes no assumptions about the underlying MIL
model. As we demonstrate in the next section, this means we can apply it to any MIL model.
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4 EXPERIMENTS

We apply our model-agnostic methods to seven MIL datasets. In this section, we detail the evaluation
strategy (Section 4.1), the datasets (Section 4.2), models (Section 4.3), and results (Section 4.4). For
implementation details, see Appendix A.1.

4.1 EVALUATION STRATEGY

For our evaluation, we do not assume that the interpretability methods have consistent output do-
mains; we only assume a larger value implies larger support. Therefore, the best approach for
evaluating the interpretability methods is to use ranking metrics — rather than looking at the ab-
solute values produced by the methods, we compare the relative orderings they produce. As noted
by Carbonneau et al. (2018), although a large number of benchmark MIL datasets exist, many do
not have instance labels. Without instance labels, evaluating interpretability is challenging, as we
do not have a ground truth instance ordering to compare to. We identify two appropriate evaluation
metrics: for datasets with instance labels, we propose the use of normalised discounted cumulative
gain at n (NDCG@n), and for datasets without instance labels, we propose the use of area under the
perturbation curve compared with random orderings (AOPC-R; Samek et al. (2016)). While AOPC-
R does not require instance labels, it is very expensive to compute. A significant difference between
the two metrics is the way they weight the importance ordering: NDCG@n prioritises performance
at the start of the ordering, whereas AOPC-R equally prioritises performance across the entire or-
dering. We are the first to propose both of these metrics for use in evaluating MIL interpretability,
and further discuss the advantages of both metrics in Appendix A.3.

4.2 DATASETS

Below we detail the three main datasets on which we can evaluate our interpretability methods.
These datasets were selected as they have instance labels, so we can evaluate them using both
NDCG@n and AOPC-R. However, we provide further results on the classical MIL datasets Musk,
Tiger, Elephant and Fox in Appendix A.4 (Dietterich et al., 1997; Andrews et al., 2002).

SIVAL The Spatially Independent, Variable Area, and Lighting (SIVAL; Rahmani et al. (2005))
dataset consists of 25 classes of complex objects photographed in different environments, where
each class contains 60 images. Each image has been segmented into approximately 30 segments,
and each segment is represented by a 30-dimensional feature vector that encodes information such
as the segment’s colour and texture. The segments are labelled as containing the object or containing
background. We selected 12 of the 25 classes to be positive classes, and randomly sampled from the
other 13 classes to form the negative class. For additional details see Appendix A.6.

Four-class MNIST-Bags The SIVAL dataset has no co-occurrence of instances from different
classes, i.e., each bag only contains one class of positive instances. Therefore, the which and what
questions are the same. In order to explore what happens when there are different classes of positive
instances in the same bag, we propose an extension of the MNIST-Bags dataset introduced by Ilse
et al. (2018). Our extension, four-class MNIST-Bags (4-MNIST-Bags) is setup as follows: class 1 if
8 in bag, class 2 if 9 in bag, class 3 in 8 and 9 in bag, and class 0 otherwise.2In this dataset, answering
what questions goes beyond answering which questions, e.g., the existence of an 8 supports classes
one and three, but refutes classes zero and two. For further details see Appendix A.7.

Colon Cancer To test the applicability of the interpretability methods on larger bag sizes, we apply
it to colorectal cancer tissue classification. The ColoRectal Cancer (CRC) dataset (Sirinukunwattana
et al., 2016) is a collection of microscopy images with annotated nuclei. We follow the same setup as
Ilse et al. (2018), in which a bag is positive if it contains one or more nuclei from the epithelial class.
This means the problem conforms to the SMIL assumption, and there are no interactions between
instances. Each microscopy image is 500 x 500 pixels, and was split into 27 x 27 pixel patches to
give a maximum of 324 patches per slide (patches were discarded if they contained mostly slide
background). Not all of the instances are labelled, so we tailor our assessment using NDCG@n to
only consider labelled instances. For additional details see Appendix A.8.

2We use n to refer to an image from the MNIST dataset that represents the number n, even though that is
not the assigned class label in the 4-MNIST-Bags dataset.
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4.3 MODELS AND METHODS

To highlight the model-agnostic abilities of the proposed methods, for each dataset, we trained four
different types of multi-class MIL model: an embedding-based multiple instance neural network
(MI-Net; Wang et al. (2018)), an instance-based multiple instance network (mi-Net; Wang et al.
(2018)), an attention-based model (MI-Attn; Ilse et al. (2018)), and a graph neural network model
(MI-GNN; Tu et al. (2019)). Aside from MI-Net, each of these models provide their own inherent
interpretability method that we can compare our methods against. Additional details on the models
are given in Appendix A.2. As well as evaluating our independent-instance methods and MILLI,
we also compare against LIME and SHAP using both random and guided sampling (choosing coali-
tions that maximise the weight kernel). This means that in total we are evaluating nine different
interpretability methods: inherent interpretability, the three independent-instance methods (Section
3.2), two LIME methods, two SHAP methods, and MILLI (Section 3.3). Note that, aside from the
inherent interpretability methods, these methods are either novel (independent-instance methods and
MILLI) or are applied to MIL for the time in this study (LIME and SHAP).

4.4 RESULTS

For each dataset, we measured the performance of each interpretability method on each of the four
MIL models. For the SIVAL dataset we measured the performance on only the negative class and
the bag’s true class, but for all the other datasets we evaluated the interpretability over every class.
This distinction was made as we know that each SIVAL bag can only contain instances from one
positive class, therefore it is not necessary to evaluate over all possible classes. We present the
interpretability results run against the test set for the SIVAL, 4-MNIST-Bags, and CRC datasets in
Tables 1, 2 and 3 respectively. The results are averaged over ten repeat trainings of each model,
and we also give the test accuracy of each of the underlying MIL models. We discuss our choice of
hyperparameters in Appendix A.5.

By analysing the NDCG@n interpretability results across these three datasets, we find that MILLI
performs best with an average of 0.85, followed by the GuidedSHAP and Combined methods (both
with an average of 0.81). For the average AOPC-R results (including the results on the classi-
cal MIL datasets, see Appendix A.4), we find that Combined, GuidedSHAP, RandomLIME, and
MILLI are the best performing methods, however the overall the difference in performance between
the methods is much less than what we observe for the NDCG@n metric. For the 4-MNIST-Bags
dataset, the difference in performance of MILLI on NDCG@n vs AOPC-R is due to the difference
in weighting between the metrics: MILLI achieves a better ordering for the most important instances
(outperforms other methods on NDCG@n), but gives the same ordering as other methods for less
important instances (equal performance on AOPC-R). In the majority of cases, all of our proposed
model-agnostic methods outperform the inherent interpretability methods, and are relatively consis-
tent in performance across all models. For the SIVAL dataset, the independent-instance methods
perform well, which is expected as the instances are independent. However, on the 4-MNIST-Bags

Table 1: SIVAL interpretability NDCG@n / AOPC-R results. For all of the interpretability methods,
the standard error of the mean was 0.01 or less.

Methods MI-Net mi-Net MI-Attn MI-GNN Overall

Model Acc 0.819 0.808 0.813 0.781 0.805

Inherent N/A 0.813 / 0.265 0.717 / 0.005 0.586 / 0.023 0.705 / 0.098

Single 0.825 / 0.280 0.813 / 0.266 0.801 / 0.302 0.734 / 0.194 0.793 / 0.261
One Removed 0.778 / 0.256 0.837 / 0.308 0.736 / 0.293 0.776 / 0.231 0.782 / 0.272
Combined 0.828 / 0.291 0.828 / 0.294 0.803 / 0.316 0.762 / 0.227 0.805 / 0.282

RandomSHAP 0.801 / 0.284 0.807 / 0.300 0.766 / 0.322 0.784 / 0.250 0.789 / 0.289
GuidedSHAP 0.826 / 0.291 0.819 / 0.290 0.790 / 0.313 0.765 / 0.235 0.800 / 0.282
RandomLIME 0.809 / 0.295 0.815 / 0.310 0.776 / 0.335 0.793 / 0.258 0.798 / 0.299
GuidedLIME 0.780 / 0.259 0.830 / 0.310 0.742 / 0.296 0.776 / 0.233 0.782 / 0.274

MILLI 0.823 / 0.283 0.827 / 0.307 0.794 / 0.307 0.790 / 0.239 0.808 / 0.284
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Table 2: 4-MNIST-Bags interpretability NDCG@n / AOPC-R results. The MI-GNN model takes
four times as long for a single model pass than the other models, so calculating its AOPC-R results on
this dataset was infeasible (see Appendix A.3). For all of the interpretability methods, the standard
error of the mean was 0.01 or less.

Methods MI-Net mi-Net MI-Attn MI-GNN Overall

Model Acc 0.971 0.974 0.967 0.966 0.970

Inherent N/A / N/A 0.723 / 0.136 0.750 / 0.002 0.419 / N/A 0.630 / 0.069

Single 0.722 / 0.138 0.723 / 0.137 0.778 / 0.164 0.761 / N/A 0.746 / 0.146
One Removed 0.811 / 0.187 0.810 / 0.186 0.809 / 0.143 0.786 / N/A 0.804 / 0.172
Combined 0.775 / 0.184 0.775 / 0.185 0.816 / 0.183 0.804 / N/A 0.792 / 0.184

RandomSHAP 0.813 / 0.186 0.809 / 0.185 0.825 / 0.178 0.828 / N/A 0.819 / 0.183
GuidedSHAP 0.773 / 0.187 0.773 / 0.188 0.816 / 0.183 0.805 / N/A 0.792 / 0.186
RandomLIME 0.828 / 0.189 0.825 / 0.189 0.841 / 0.179 0.838 / N/A 0.833 / 0.186
GuidedLIME 0.760 / 0.189 0.756 / 0.187 0.785 / 0.145 0.776 / N/A 0.769 / 0.174

MILLI 0.947 / 0.190 0.943 / 0.189 0.917 / 0.181 0.959 / N/A 0.942 / 0.186

Table 3: CRC interpretability NDCG@n results. As this dataset has much larger bag sizes (264
instances per bag on average), it is infeasible to compute its AOPC-R results (see Appendix A.3).
For all of the interpretability methods, the standard error of the mean was 0.02 or less.

Methods MI-Net mi-Net MI-Attn MI-GNN Overall

Model Acc 0.795 0.795 0.830 0.770 0.797

Inherent N/A 0.845 0.692 0.684 0.740

Single 0.815 0.845 0.847 0.786 0.823
One Removed 0.698 0.682 0.701 0.815 0.724
Combined 0.815 0.845 0.846 0.803 0.827
RandomSHAP 0.695 0.690 0.717 0.703 0.701
GuidedSHAP 0.815 0.845 0.846 0.804 0.827
RandomLIME 0.695 0.702 0.716 0.813 0.731
GuidedLIME 0.687 0.699 0.701 0.818 0.726

MILLI 0.753 0.800 0.810 0.780 0.786

dataset, MILLI excels as it samples informative coalitions that capture the instance interactions. On
the CRC dataset, methods that are able to isolate individual instances, (i.e., the Single, Combined,
and GuidedSHAP methods) perform well due to instance independence in this dataset. Further-
more, if we consider the witness rate (WR; the proportion of key instances in each bag; Carbonneau
et al. (2018)) of the datasets, we find that the CRC dataset has a higher WR (27.47%) than SIVAL
(15.28%) and 4-MNIST-Bags (8.04%). This means, with larger coalitions, it becomes more difficult
to isolate the contributions of individual instances, which is why the One Removed and Random
sampling methods struggle.

5 DISCUSSION

To demonstrate how MILLI captures instance interactions, and to show the limitations of existing
methods that cannot condition their output for a particular class, we compare the MILLI interpre-
tations with the attention interpretations on the 4-MNIST-Bags dataset (Figure 3). As this bag con-
tains an 8 and a 9, the correct label for it is class three. Both the MILLI and attention methods have
identified the 8 and 9 instances as key instances, i.e., they have both answered the which question.
However, only MILLI correctly identifies that the 8 refutes class two and that the 9 refutes class
one, answering the what question, something that the attention values do not do. We provide further
examples, including interpretability outputs for the SIVAL and CRC datasets, in Appendix A.10.
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Figure 3: An example of the identification of key instances for the 4-MNIST-Bags experiment. The
top row shows the attention value for each instance, and bottom three rows show the output of MILLI
for classes three, two, and one respectively (green = support, red = refute).

LIME, SHAP, and MILLI all require the number of sampled coalitions to be selected. A greater
number of coalitions means there is more data to fit the surrogate model on, therefore it is more likely
to faithful to the underlying model. However, the more samples that are taken, the more expensive
the computation. As shown in Figure 4, MILLI is the most consistent in terms of performance and
efficiency. For all methods, it is a case of diminishing returns, where additional samples only lead
to a small increase in performance.

Figure 4: The effect of sample size on interpretability performance for the MI-Attn model. We
provide the results of the same study but for the other MIL models in Appendix A.9.

The different sampling approaches used in this work have distinct advantages. When there are in-
teractions between instances, RandomSHAP and RandomLIME are better than GuidedSHAP and
GuidedLIME as they form larger coalitions that are more likely to capture the instance interac-
tions. However, for the CRC dataset, where there are a large number of independent instances and
a high WR, RandomSHAP, RandomLIME and GuidedLIME struggle as they cannot form small
coalitions. MILLI performs relatively well across all datasets as the size of its sampled coalitions
can be adapted depending on the dataset, demonstrating its generalisability. However, it is still out-
performed by GuidedSHAP on the CRC dataset. One possible explanation for this is that MILLI
is limited to sampling only smaller or larger coalitions, whereas GuidedSHAP samples both large
and small coalitions. One approach for improving MILLLI would be to incorporate paired sampling
(Covert & Lee, 2020), where for every sampled coalition zi, we also sample its complement coali-
tion 1− zi. Following the advice of Carbonneau et al. (2018), further MIL studies on more complex
datasets, such as Pascal VOC (Everingham et al., 2010), could also be insightful for evaluating MIL
interpretability methods. It would also be beneficial to examine if these techniques are applicable to
MIL domains beyond classification, e.g. MIL regression as in Wang et al. (2020).

6 CONCLUSION

In this work, we have discussed the process of model-agnostic interpretability for MIL. Along with
defining the requirements for MIL interpretability, we have presented our own approaches and com-
pared them to existing inherently interpretable MIL models. By analysing the methods across sev-
eral datasets, we have shown that independent-instance methods can be effective, but local surrogate
methods are required when there are interactions between the instances. All of our proposed meth-
ods are more effective than existing inherently interpretable models, and are able to not only identify
which are the key instances, but also say what classes they support and refute.
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REPRODUCIBILITY STATEMENT

For our work, the main details for the methodology are detailed in Section 3. In addition, we provide
details that will aid reproducibility in the Appendix. The dataset sources and a general overview of
our implementation is given in Appendix A.1. Further information on the MIL models used in
this work can be found in Appendix A.2, and specific details on their architectures and training
can be found in Appendices A.6, A.7, and A.8 for the SIVAL, 4-MNIST-Bags, and CRC datasets
respectively. The codebase for this work can be found on GitHub: https://github.com/
JAEarly/MILLI.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

All code for this work was implemented in Python 3.8, using the PyTorch library for the machine
learning functionality. Hyperparameter tuning was carried out using the Optuna libary. Some lo-
cal experiments were carried out on a Dell XPS Windows laptop, utilising a GeForce GTX 1650
graphics card with 4GB of VRAM. GPU support for machine learning was enabled through CUDA
v11.0. Other longer running experiments, such as hyperparameter tuning, were carried out on a re-
mote GPU node utilising a Volta V100 Enterprise Compute GPU with 16GB of VRAM. The longest
model to train was the GNN for the CRC dataset, which took just under half an hour. The longest
running experiment was the hyperparameter analysis for the CRC dataset at just under 40 hours.
This was due to high number of samples for the local surrogate methods and the fact that the results
were average over 10 different models. The randomisation of data splits was fixed using seeding;
the seed values are provided in the code for each experiment. We use the following sources for our
data:

• The annotated SIVAL dataset was downloaded from the publicly accessible page:
http://pages.cs.wisc.edu/˜bsettles/data/.

• The MNIST dataset was access directly from the PyTorch Python library:
https://pytorch.org/vision/stable/datasets.html#mnist.

• The CRC dataset was downloaded from the publicly accessible page:
https://warwick.ac.uk/fac/cross_fac/tia/data/crchistolabelednucleihe/.

• The Musk dataset was downloaded from the publicly accessible page:
https://archive.ics.uci.edu/ml/datasets/Musk+%28Version+2%29

• The Tiger, Elephant and Fox datasets were downloaded from the publicly accessible page:
http://www.cs.columbia.edu/˜andrews/mil/datasets.html

A.2 MODELS

In this work, we trained four different models for each dataset. In this section, we provide further
details on each of the models. Each model was tuned independently for each dataset, so in the later
sections we provide details of the specific architectures for each dataset. We also tuned the learning
rate, weight decay, and dropout for each of the models independently for every dataset. Again, these
are given in the later sections for each specific dataset.

MI-Net Each instance is embedded to a fixed size, and then these embeddings are aggregated to
give a single bag embedding. This aggregation can either take the mean (mil-mean) or max (mil-
max) of the instance embeddings. The bag embedding is then classified to give an overall bag
prediction. For this model, we tuned the number and size of fully connected (FC) layers, as well as
the choice of aggregation function.

mi-Net A prediction is made for each individual instance, and then these are aggregated to a
single outcome for the bag as a whole. Similar to the MI-Net model, we tuned the FC layers and the
aggregation function.

MI-Attn Each instance is embedded to a fixed size, and then the mil-attn block produces an atten-
tion value for each instance embedding. The instance embeddings are then aggregated to a single
bag embedding by performing a weighted sum based on the attention values. The bag embedding
is then classified to give an overall bag prediction. The mil-attn block is the same as per the MIL
attention mechanism proposed by Ilse et al. (2018), i.e., using a single hidden layer. We tuned the
the number and size of the FC layers, as well as the size of the hidden attention layer.

MI-GNN The GNN model treats the bag as a fully connected graph and uses graph convolutions
to propagate information between instances. Initially, the original instances are embedded to a
fixed size. These instance embeddings are then passed onto a GNNembed block and a GNNcluster
block, the output of which is used to reduce the graph representation down into a single embedding
using differentiable pooling (gnn-pool). The final bag representation is then classified to give an
overall bag prediction. For more details see Tu et al. (2019). We tuned the number and size of the
embedding, GNN, and classifier layers.
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A.3 EVALUATION METRICS

In this section, we provide further details on how we use normalised discounted cumulative gain at
n (NDCG@n) to evaluate the interpretability methods for datasets with instance labels, and how we
use area under the perturbation curve with random orderings (AOPC-R) to evaluate the interpretabil-
ity methods for datasets without instance labels.

NDCG@n To use NDCG@n, we first need a ground truth ordering to compare to. For a particular
class, we can place each instance into one of three groups based on their ground truth instance labels:
supporting instances, neutral instances, and refuting instances. The ideal instance ordering for that
class would then have all of the supporting instances at the beginning, followed by all the neutral
instances, and then all of the refuting instances at the end. Then, given interpretability outputs
{φ1, . . . , φk} for a particular class, we rank the outputs from highest to lowest, i.e., in order of
how much they support that class. This importance ordering is then compared to the ground truth
ordering using the follow metric:

NDCG@n =
1

IDCG

n∑
i=1

rel(i)
log2(i+ 1)

,

where IDCG =

n∑
i=1

1

log2(i+ 1)
.

IDCG is the ideal discounted cumulative gain that normalises the scores across different values of
n. The relevance function rel(i) is as follows:

rel(i) =


1 if the ith instance in the ranking supports the class,
−1 if the ith instance in the ranking refutes the class,
0 otherwise.

AOPC-R Although originally designed for single instance supervised learning, here we adapt
AOPC-R for MIL. Given an importance ordering, AOPC successively removes the most relevant
instances (i.e., those at the start of the given importance ordering), and measures the change in
prediction. A better ordering will show a more rapid decrease in prediction, as instances that are
more supportive will be removed first. This rate of decrease in prediction with respect to class
c for a classifier F and bag X = {x1, . . . , xk} is measured as follows: given the ordered bag
OX = {o1, . . . , ok} (which is just X ordered by instance importance, with the most important
instances at the start),

AOPC =
1

k − 1

k−1∑
i=1

Fc(X)− Fc(X(i)
MoRF ), (6)

where X(0)
MoRF = X, (7)

and X(i)
MoRF = X

(i−1)
MoRF \ {oi}. (8)

To normalise the results, one approach is to measure the average difference in AOPC for the given
ordering to the AOPC of several random orderings:

AOPC-R =
1

r

r∑
i=1

AOPC(OX)− AOPC(ORi
), (9)

where r is the number of random orderings, and ORi
is the ith random ordering of X . The repeated

calls to Fc make AOPC-R very expensive to compute. This can be reduced by examining the p first
perturbations rather than all k−1 possible perturbations, but that was not something we investigated
in this work (we kept p = k and r = 10). Furthermore, due to the use of random orderings, this
evaluation metric is inherently stochastic, meaning not only do we have variance in the orderings
produced in the methods (e.g., from random sampling), we also have variance due to measurement.
NDCG@n does not have either of the issues (i.e., its cheap to compute and deterministic), however
it requires (at least some) instance labels.
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A.4 ADDITIONAL RESULTS

In this section, we detail our additional results on the Musk and Tiger, Elephant & Fox (TEF) clas-
sical MIL datasets. Although these datasets do not have instance labels, since they are widely used
MIL datasets, it is useful to see how our interpretability methods perform on them. Each of these
datasets are instance independent, and as they have a low number of instances per bag, we adapted
our local surrogate methods to allow sampling with repeats (otherwise we cannot sample enough
coalitions). In our previous experiments, we restricted the local surrogate methods to sampling
without repeats, which was not an issue with the larger bag sizes in the SIVAL, 4-MNIST-Bags, and
CRC datasets. For each of these classic datasets, we used the same model hyperparameters that we
used for SIVAL (see Appendix A.6), i.e., we didn’t retune the training parameters or model archi-
tectures. However, we did tune the parameters for the interpretability methods, which we discuss
in Appendix A.5. We give the interpretability results as well as the model performance for Musk
(Table A1), Tiger (Table A2), Elephant (Table A3), and Fox (Table A4) below.

Table A1: Musk interpretability AOPC-R results. Note that we are using the Musk1 dataset, rather
than Musk2, as the latter has much larger bag sizes, making the use of AOPC-R infeasible.

Methods MI-Net mi-Net MI-Attn MI-GNN Overall

Model Acc 0.871 ± 0.024 0.836 ± 0.027 0.793 ± 0.029 0.793 ± 0.028 0.823 ± 0.016

Inherent N/A 0.108 ± 0.010 0.002 ± 0.015 0.003 ± 0.006 0.036 ± 0.011

Single 0.123 ± 0.010 0.108 ± 0.010 0.113 ± 0.010 0.090 ± 0.010 0.108 ± 0.010
One Removed 0.108 ± 0.009 0.107 ± 0.010 0.088 ± 0.008 0.076 ± 0.009 0.095 ± 0.009
Combined 0.124 ± 0.010 0.107 ± 0.010 0.116 ± 0.010 0.088 ± 0.010 0.109 ± 0.010
RandomSHAP 0.115 ± 0.009 0.104 ± 0.010 0.110 ± 0.009 0.077 ± 0.009 0.102 ± 0.009
GuidedSHAP 0.122 ± 0.009 0.106 ± 0.010 0.116 ± 0.010 0.084 ± 0.009 0.107 ± 0.009
RandomLIME 0.113 ± 0.009 0.107 ± 0.010 0.110 ± 0.009 0.080 ± 0.009 0.102 ± 0.009
GuidedLIME 0.117 ± 0.009 0.106 ± 0.010 0.102 ± 0.008 0.077 ± 0.009 0.101 ± 0.009

MILLI 0.117 ± 0.009 0.105 ± 0.010 0.109 ± 0.009 0.084 ± 0.010 0.104 ± 0.009

Table A2: Tiger interpretability AOPC-R results.

Methods MI-Net mi-Net MI-Attn MI-GNN Overall

Model Acc 0.827 ± 0.024 0.807 ± 0.029 0.807 ± 0.019 0.800 ± 0.028 0.810 ± 0.005

Inherent N/A 0.124 ± 0.005 0.001 ± 0.007 0.000 ± 0.003 0.042 ± 0.005

Single 0.132 ± 0.005 0.125 ± 0.005 0.120 ± 0.005 0.082 ± 0.003 0.115 ± 0.004
One Removed 0.123 ± 0.005 0.127 ± 0.005 0.114 ± 0.004 0.081 ± 0.003 0.111 ± 0.004
Combined 0.130 ± 0.005 0.127 ± 0.005 0.124 ± 0.005 0.082 ± 0.003 0.116 ± 0.004
RandomSHAP 0.124 ± 0.004 0.122 ± 0.005 0.121 ± 0.005 0.080 ± 0.003 0.112 ± 0.004
GuidedSHAP 0.130 ± 0.005 0.125 ± 0.005 0.121 ± 0.005 0.082 ± 0.003 0.115 ± 0.004
RandomLIME 0.128 ± 0.005 0.125 ± 0.005 0.119 ± 0.005 0.081 ± 0.003 0.113 ± 0.004
GuidedLIME 0.129 ± 0.005 0.125 ± 0.005 0.122 ± 0.005 0.082 ± 0.003 0.115 ± 0.004

MILLI 0.128 ± 0.005 0.125 ± 0.005 0.120 ± 0.004 0.081 ± 0.003 0.114 ± 0.004

We find that there is very little difference in interpretability performance for each of our proposed
methods across these four datasets. This is to be expected, as the instances are independent, there-
fore the independent-instance methods as well as the local surrogate methods are able to identify the
important instances, i.e., there is little to be gained by sampling coalitions when each instance can
be understood in isolation. However, this reinforces the applicability of all of our proposed meth-
ods. We note that the attention and GNN inherent interpretability methods perform poorly in these
experiments — this is because they are unable to condition their outputs on a specific class (i.e., they
can only answer which questions, not what questions). We also note that the performance is much
worse on the Fox dataset. Here, the underlying MIL models perform poorly, so it is unsurprising
that the interpretability methods also perform poorly.
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Table A3: Elephant interpretability AOPC-R results.

Methods MI-Net mi-Net MI-Attn MI-GNN Overall

Model Acc 0.857 ± 0.017 0.863 ± 0.017 0.867 ± 0.016 0.853 ± 0.020 0.860 ± 0.003

Inherent N/A 0.130 ± 0.006 0.000 ± 0.006 0.000 ± 0.003 0.043 ± 0.005

Single 0.127 ± 0.004 0.131 ± 0.006 0.127 ± 0.005 0.105 ± 0.004 0.122 ± 0.005
One Removed 0.117 ± 0.004 0.129 ± 0.006 0.105 ± 0.005 0.103 ± 0.004 0.114 ± 0.005
Combined 0.126 ± 0.004 0.130 ± 0.006 0.127 ± 0.005 0.106 ± 0.004 0.122 ± 0.005
RandomSHAP 0.124 ± 0.004 0.126 ± 0.006 0.119 ± 0.005 0.102 ± 0.004 0.118 ± 0.005
GuidedSHAP 0.127 ± 0.004 0.130 ± 0.006 0.124 ± 0.005 0.105 ± 0.004 0.122 ± 0.005
RandomLIME 0.124 ± 0.004 0.128 ± 0.006 0.121 ± 0.005 0.104 ± 0.004 0.119 ± 0.005
GuidedLIME 0.123 ± 0.004 0.130 ± 0.006 0.118 ± 0.005 0.104 ± 0.004 0.119 ± 0.005

MILLI 0.124 ± 0.005 0.128 ± 0.006 0.121 ± 0.005 0.103 ± 0.005 0.119 ± 0.005

Table A4: Fox interpretability AOPC-R results.

Methods MI-Net mi-Net MI-Attn MI-GNN Overall

Model Acc 0.600 ± 0.011 0.610 ± 0.017 0.620 ± 0.023 0.580 ± 0.013 0.603 ± 0.007

Inherent N/A 0.050 ± 0.002 0.001 ± 0.002 0.000 ± 0.001 0.017 ± 0.002

Single 0.044 ± 0.002 0.049 ± 0.002 0.041 ± 0.002 0.021 ± 0.001 0.039 ± 0.002
One Removed 0.043 ± 0.002 0.049 ± 0.002 0.040 ± 0.002 0.021 ± 0.001 0.038 ± 0.002
Combined 0.044 ± 0.002 0.050 ± 0.002 0.041 ± 0.002 0.021 ± 0.001 0.039 ± 0.002

RandomSHAP 0.044 ± 0.002 0.049 ± 0.002 0.041 ± 0.002 0.021 ± 0.001 0.039 ± 0.002
GuidedSHAP 0.045 ± 0.002 0.050 ± 0.002 0.042 ± 0.002 0.021 ± 0.001 0.040 ± 0.002
RandomLIME 0.044 ± 0.002 0.050 ± 0.002 0.041 ± 0.002 0.021 ± 0.001 0.039 ± 0.002
GuidedLIME 0.044 ± 0.002 0.050 ± 0.002 0.041 ± 0.002 0.021 ± 0.001 0.039 ± 0.002

MILLI 0.043 ± 0.002 0.049 ± 0.002 0.041 ± 0.002 0.022 ± 0.001 0.039 ± 0.002

A.5 INTERPRETABILITY METHOD HYPERPARAMETER SELECTION

In this section we discuss our method for hyperparameter selection in the interpretability methods,
and detail the hyperparameters that we found to be most effective. An advantage of the inherent
interpretability and independent-instance methods is that they do not have hyperparameters, i.e., we
only had to select hyperparameters for the local surrogate interpretability methods. First, we discuss
our choice of hyperparameters for LIME, and then our choice of hyperparameters for MILLI.

LIME hyperparameters When using the LIME weight kernel, there are two hyperparameters to
tune. Firstly, the distance measures that are commonly used are L2 and cosine distance. In our
experiments, we found very little difference between each of these distance measures, therefore
we arbitrarily chose to use L2 distance in all of our experiments. The second hyperparameter is
the kernel width, which determines the weighting of coalitions, i.e., a large kernel width means all
coalitions are weighted more evenly, and a small kernel width prioritises larger coalitions. We chose
to use a kernel width for all of our experiments that is determined by the average bag size, such that
the half coalition (i.e., |z| = 0.5k) is weighted at 0.5.

MILLI hyperparameters For MILLI, there were three hyperparameters to tune: the number of
samples, α, and β. For the number of samples, we generated sample size plots such as Figure 4
(also see Appendix A.9), and chose the number of samples to be at the point where all the methods
had reasonably converged. For α and β we ran a grid search over the possible values, and chose the
best performing pair of parameters. The hyperparameters were tuned for each dataset, except for
the TEF datasets, in which we only tuned on Tiger and then used the same hyperparameters across
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all three datasets. In Table A5, we provide the chosen hyperparameters for each dataset, as well as
the expected coalition size E[|z|] determined by α and β. For the CRC, Musk and TEF datasets,
the chosen parameters produce small values for E[|z|], i.e., the sampling is heavily biased towards
smaller coalitions, which is expected as these are instance independent datasets. Conversely, the
parameters for the 4-MNIST-Bags focus on sampling larger coalitions that are able to capture the
instance interactions in the dataset. Although the SIVAL dataset is instance independent, the pa-
rameters also focus on sampling larger coalitions. This could be because, although the instances are
independent, it may be difficult to classify an object from just one instance, i.e., several instances
are needed to make the correct decision. We also note that, in all cases, α < 0.5, i.e., the sampling
is biased towards instances ranked lower in the initial importance ordering used by MILLI. Our ex-
planation for this is that it is easy to understand the contribution of discriminatory instances, as they
have a large effect on the model prediction, but it is more difficult to understand the contribution of
non-discriminatory instances, as they have much less of an effect. Therefore, more samples contain-
ing non-discriminatory instances are required to properly understand their effect, hence biasing the
sampling towards them.

Table A5: MILLI hyperparameters.

Dataset Sample Size α β E[|z|]
SIVAL 200 0.05 -0.01 13
4-MNIST-Bags 150 0.05 0.01 16
CRC 1000 0.008 -5.0 2
MUSK 150 0.3 -1.0 2
TEF 150 0.3 0.01 3

A.6 SIVAL EXPERIMENT DETAILS

Dataset For the SIVAL dataset, each instance is represented by a 30-dimensional feature vector,
and there are around 30 instances per bag. We chose 12 of the 25 original classes to be the positive
classes, and randomly selected 30 images from each of the other 13 classes to form the negative
class, meaning overall we had 13 classes (12 positive and one negative). In total, we had 60 bags
for each of the 12 positive classes, and 390 bags for the single negative class, meaning the class
distribution was ≈ 5.4% for each positive class and ≈ 35.1% for the negative class. The arbitrarily
chosen positive classes were: apple, banana, checkeredscarf, cokecan, dataminingbook, goldmedal,
largespoon, rapbook, smileyfacedoll, spritecan, translucentbowl, and wd40can. We normalised each
instance according to the dataset mean and standard deviation. No other data augmentation was used.
The dataset was separated into train, validation, and test data using an 80/10/10 split. This was done
with stratified sampling in order to maintain the same data distribution across all splits.

Training When training models against the SIVAL dataset, we used a batch size of one, i.e., a
single bag of, on average, 30 instances. We trained the models to minimise cross entropy loss
using the Adam optimiser; the hyperparamater details for learning rate (LR), weight decay (WD)
and dropout (DO) are given in Table A6. We utilised early stopping based on validation loss — if
the validation loss had not decreased for 10 epochs then we terminated the training procedure and
reset the model to the point at which it caused the last decrease in validation loss. Otherwise, the
maximum number of epochs was 100. The tuned architectures for each model are given in Tables
A7 to A10, and the results for each model are comapred in Table A11.

Table A6: SIVAL hyperparameters.
Model LR WD DO

Mi-Net 5× 10−3 1× 10−3 0.45
mi-Net 5× 10−4 1× 10−5 0.25
MI-Attn 1× 10−3 1× 10−5 0.15
MI-GNN 5× 10−4 1× 10−5 0.2

Table A7: SIVAL MI-Net architecture.
Layer Type Input Output

1 FC + ReLU + DO 30 128
2 FC + ReLU + DO 128 256
3 mil-max 256 256
4 FC 256 13
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Table A8: SIVAL mi-Net architecture.
Layer Type Input Output

1 FC + ReLU + DO 30 512
2 FC + ReLU + DO 512 256
3 FC + ReLU + DO 256 64
4 FC 64 13
5 mil-mean 13 13

Table A9: SIVAL MI-Attn architecture.
Layer Type Input Output

1 FC + ReLU + DO 30 128
2 FC + ReLU + DO 128 256
3 FC + ReLU + DO 256 128
4 mil-attn(256) + DO 128 128
5 FC 128 13

Table A10: SIVAL MI-GNN architecture.
Layer Type Input Output

1 FC + ReLU + DO 30 128

2a GNNembed SAGEConv + ReLU + DO 128 128
SAGEConv + ReLU + DO 128 256
SAGEConv + ReLU + DO 256 64

2b GNNcluster SAGEConv + Softmax 128 1

3 gnn-pool 64 64
4 FC + ReLU + DO 64 128
5 FC 128 13

Table A11: SIVAL model results. The mean performance was calculated over ten repeat trainings
of each model, and the standard error of the mean is given.

Model Train Accuracy Val Accuracy Test Accuracy

MI-Net 0.984 ± 0.004 0.850 ± 0.009 0.819 ± 0.012
mi-Net 0.967 ± 0.005 0.835 ± 0.010 0.808 ± 0.011
MI-Attn 0.972 ± 0.007 0.830 ± 0.011 0.813 ± 0.012
MI-GNN 0.932 ± 0.014 0.803 ± 0.014 0.781 ± 0.019

A.7 4-MNIST-BAGS EXPERIMENT DETAILS

Dataset In the 4-MNIST-Bags experiments, the bag sizes were draw from a normal distribution,
with a mean of 30 and a variance of 2. We used 2500 training bags, 1000 validation bags, and 1000
test bags. The instances in the training bags were only drawn from the original MNIST training
split, and the instances in the validation and test bags were only drawn from the original MNIST
test split, i.e., there was no overlap between training, validation, and test instances. The classes
were balanced, so, on average, there were 625 bags per class in the training data, and 250 bags per
class in the validation and test data. We normalised the MNIST images using the PyTorch normalise
transformation, with a mean of 0.1307 and a stand deviation of 0.3081. No other data augmentation
was carried out.

Training The training procedure was the same as for the SIVAL experiments: a batch size of one,
early stopping with a patience of ten, and a maximum of 100 epochs. The training hyperparamater
details are given in Table A12. For each model, we first passed the MNIST instances through a
convolutional architecture to produce initial instance embeddings. This encoder was not tuned for
each model (i.e., the architecture was fixed, but the weights were learnt). The architecture for this
encoder is given in Table A13, and then the model architectures are given in Tables A14 to A17. The
encoder produces features vectors with 800 features, therefore the input size to each of the models
is 800. The model results are given in Table A18.
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Table A12: 4-MNIST-Bags hyperparameters.
Model LR WD DO

MI-Net 1× 10−4 1× 10−3 0.3
mi-Net 1× 10−4 1× 10−4 0.3
MI-Attn 1× 10−4 1× 10−4 0.15
MI-GNN 5× 10−5 1× 10−5 0.3

Table A13: 4-MNIST-Bags convolutional encod-
ing architecture. For the convolutional (Conv2d)
and pooling (MaxPool2d) layers, the numbers
in the brackets are the kernel size, stride, and
padding.

Layer Type Input Out

1 Conv2d(5, 1, 0) + ReLU 1 20
2 MaxPool2d(2, 2, 0) + DO 20 20
3 Conv2d(5, 1, 0) + ReLU 20 50
4 MaxPool2d(2, 2, 0) + DO 50 50

Table A14: 4-MNIST-Bags MI-Net architecture.
Layer Type Input Output

1 FC + ReLU + DO 800 128
2 FC + ReLU + DO 128 512
3 mil-mean 512 512
4 FC 512 4

Table A15: 4-MNIST-Bags mi-Net architecture.
Layer Type Input Output

1 FC + ReLU + DO 800 512
2 FC + ReLU + DO 512 128
3 FC + ReLU + DO 128 64
4 FC 128 4
5 mil-mean 4 4

Table A16: 4-MNIST-Bags MI-Attn architecture.
Layer Type Input size Output size

1 FC + ReLU + Dropout 800 64
2 FC + ReLU + Dropout 64 256
3 mil-attn(64) + Dropout 256 256
4 FC + ReLU + Dropout 256 64
5 FC 64 4

Table A17: 4-MNIST-Bags MI-GNN architecture.
Layer Type Input size Output size

1 FC + ReLU + Dropout 800 64
2 FC + ReLU + Dropout 64 64

3a GNNembed SAGEConv + ReLU + Dropout 64 128
SAGEConv + ReLU + Dropout 128 128
SAGEConv + ReLU + Dropout 128 128

3b GNNcluster SAGEConv + Softmax 64 1

4 gnn-pool 128 128
5 FC + ReLU + Dropout 128 64
6 FC 64 4

Table A18: 4-MNIST-Bags model results. The mean performance was calculated over ten repeat
trainings of each model, and the standard error of the mean is given.

Model Train Accuracy Val Accuracy Test Accuracy

MI-Net 0.995 ± 0.001 0.972 ± 0.002 0.971 ± 0.002
mi-Net 0.993 ± 0.001 0.973 ± 0.002 0.974 ± 0.002
MI-Attn 0.991 ± 0.002 0.967 ± 0.003 0.967 ± 0.003
MI-GNN 0.984 ± 0.002 0.968 ± 0.002 0.966 ± 0.002
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A.8 CRC EXPERIMENT DETAILS

Dataset In the CRC dataset, there are 100 microscopy images, and each image is annotated with
four classes of nuclei: epithelial, inflammatory, fibroblast, and miscellaneous. Of these 100 images,
50 are in the negative class (no epithelial nuclei), and 50 are in the positive class (at least one
epithelial nuclei). Each image is 500 x 500 pixels, and was split into 27 x 27 pixel patches to give
324 patches per slide. The patches were created by applying a non-overlapping grid over the image,
where each cell of the grid was a 27 x 27 pixel region. The alternative would be to extract patches
centred on each marked nuclei (as done by Ilse et al. (2018)), however this method then requires
the nuclei to be marked for unseen data. This accounts for the difference between our results and
the results of Ilse et al. (2018) — extracting the patches using a fixed grid will include patches that
do not contain any marked nuclei, increasing the amount of non-discriminatory data in each bag
and thus making the problem harder to learn. We removed slide background patches by using a
brightness threshold — any patch with an average pixel value above 230 (using pixel values 0 to
255) was discarded. This left an average of 264 patches per image, and one image was discarded
as it had zero foreground patches (this was also manually verified). The images were normalised
using the dataset mean (0.8035, 0.6499, 0.8348) and standard deviation (0.0858, 0.1079, 0.0731).
During training, we also applied three transformations to patches at random: horizontal flips, vertical
flips, and 90 degree rotations. The dataset was separated into train, validation, and test data using a
60/20/20 split. This was done with stratified sampling in order to maintain the same data distribution
across all splits.

Training The training procedure was the same as for the SIVAL and 4-MNIST-Bags experiments:
a batch size of one, early stopping with a patience of ten, and a maximum of 100 epochs. The training
hyperparamater details are given in Table A19. Following the same procedure as the 4-MNIST-Bags
experiments, for each model, we first passed the patches through a convolutional architecture to
produce initial instance embeddings. The architecture for this encoder is given in Table A20, and
then the model architectures are given in Tables A21 to A24. The encoder produces features vectors
with 1200 features, therefore the input size to each of the models is 1200. The model results are
given in Table A25.

Table A19: CRC training hyperparameters.
Model LR WD DO

MI-Net 5× 10−4 1× 10−3 0.3
mi-Net 5× 10−4 1× 10−2 0.25
MI-Attn 1× 10−3 1× 10−6 0.2
MI-GNN 1× 10−3 1× 10−2 0.35

Table A20: CRC convolutional encoding archi-
tecture. For the convolutional (Conv2d) and
pooling (MaxPool2d) layers, the numbers in the
brackets are the kernel size, stride, and padding.

Layer Type Input Out

1 Conv2d(4, 1, 0) + ReLU 3 36
2 MaxPool2d(2, 2, 0) + DO 36 36
3 Conv2d(3, 1, 0) + ReLU 36 48
4 MaxPool2d(2, 2, 0) + DO 48 48

Table A21: CRC MI-Net architecture.
Layer Type Input Output

1 FC + ReLU + DO 1200 64
2 FC + ReLU + DO 64 512
3 mil-max 512 512
4 FC + ReLU + DO 512 128
4 FC + ReLU + DO 128 64
4 FC + ReLU + DO 64 2

Table A22: CRC mi-Net architecture.
Layer Type Input Output

1 FC + ReLU + DO 1200 64
2 FC + ReLU + DO 64 64
3 FC + ReLU + DO 64 64
4 FC 64 2
5 mil-max 2 2
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Table A23: CRC MI-Attn architecture.
Layer Type Input size Output size

1 FC + ReLU + Dropout 1200 64
2 FC + ReLU + Dropout 64 64
3 FC + ReLU + Dropout 64 256
4 mil-attn(128) + Dropout 256 256
5 FC 256 2

Table A24: CRC MI-GNN architecture.
Layer Type Input size Output size

1 FC + ReLU + Dropout 1200 64
2 FC + ReLU + Dropout 64 128

3a GNNembed SAGEConv + ReLU + Dropout 128 128

3b GNNcluster SAGEConv + Softmax 128 1

4 gnn-pool 128 128
5 FC + ReLU + Dropout 128 128
6 FC 128 2

Table A25: CRC model results. The mean performance was calculated over ten repeat trainings of
each model, and the standard error of the mean is given.

Model Train Accuracy Val Accuracy Test Accuracy

MI-Net 0.880 ± 0.041 0.805 ± 0.034 0.795 ± 0.042
mi-Net 0.856 ± 0.041 0.810 ± 0.043 0.795 ± 0.049
MI-Attn 0.870 ± 0.014 0.860 ± 0.017 0.830 ± 0.028
MI-GNN 0.791 ± 0.039 0.765 ± 0.031 0.770 ± 0.032

A.9 ADDITIONAL EXPERIMENTS

In this section, we provide additional sample size experiments for the SIVAL, 4-MNIST-Bags, and
CRC datasets for MI-Net (Figure A1), mi-Net (Figure A2), and MI-GNN (Figure A3). We find
the trends are relatively consistent across all the models. GuidedSHAP and MILLI are the most
consistent and well performing methods, and MILLI is particularly effective on the 4-MNIST-Bags
dataset. One considerable difference is the performance of RandomLIME and GuidedLIME on the
CRC dataset for the MI-GNN model; for all other models, both LIME methods perform poorly on
the CRC dataset. Further investigation is required to understand why this happens. However, the
LIME methods are still outperformed by MILLI and GuidedSHAP on the CRC dataset, even for the
MI-GNN model.

Figure A1: The effect of sample size on interpretability performance for MI-Net.
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Figure A2: The effect of sample size on interpretability performance for mi-Net.

Figure A3: The effect of sample size on interpretability performance for MI-GNN.

A.10 ADDITIONAL OUTPUTS

In this section, we provide additional interpretability outputs from our studies, similar to the one
in Section 5. First, we provide additional outputs for the 4-MNIST-Bags dataset. Then, we show
the interpretability outputs for the SIVAL and CRC datasets. The SIVAL outputs are created by
ranking the instances in a bag according to some interpretability function (i.e., by using MILLI),
and then selecting the top n, where n is the known number of key instances in the bag. Then, the
corresponding segment for each instance is weighted by the function log2(i + 1)−1, where i is the
instance’s position in the ranking (this is the same scaling used in NDCG@n). The other instances all
received a weighting of zero. The brightness of each segment in the output image then corresponds
with its relative importance according to the interpretability method. For the CRC interpretability
outputs, the important patches are found by using an interpretability method to output the top n
patches that support a particular class, where n is the number of known important instances for that
class. We then highlight these patches while dimming the other patches to produce an interpretation
of the model’s decision-making.

Figure A4: The interpretability output for a class two bag on the 4-MNIST-Bags experiment. The
top row shows the attention value for each instance, and bottom two rows show the output of MILLI
for classes two and zero respectively (green = support, red = refute). We can see that both Attention
and MILLI have identified the 9s as important, but only MILLI is able to also say that the 9s support
class two and refute class zero.
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Figure A5: The interpretability output for a class one bag on the 4-MNIST-Bags experiment. We
can see that both Attention and MILLI have identified the 8s as important, but only MILLI is able to
also say that the 8s support class one and refute class zero. Also note that the colours are less strong
for the final 8 — the digit is partially obscured, so the model is less confident.

Figure A6: The interpretability output for two examples of the cokecan class in the SIVAL dataset.
The first column shows the original images, the second column the ground truth segments that
contain the object, and the final column is the output from MILLI. The interpretations show the
model is relying heavily on the colour red as an indicator of the object’s location, as it also picks up
on the red in the background as being important.
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Figure A7: The interpretability output for two examples of the dataminingbook class in the SIVAL
dataset. Again, the interpretations show the model is relying heavily on the colour orange as an indi-
cator of the object’s location, as it also picks up on the similar colours in the background, including
the reflection of the book in the table.

Figure A8: The interpretability output for two examples of the goldmedal class in the SIVAL dataset.
Here, the interpretations show the model is ignoring the gold medal itself, and instead focusing on
the red ribbon, i.e., if it were shown the medal without the ribbon, it would likely misclassify it.
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Figure A9: The interpretability output for two examples of the wd40can class in the SIVAL dataset.
Here, the interpretations show the model is predominantly focusing on the strong yellow colour at
the top of the can, and sometimes picks out the letters and red cap. The rest of the bottle is largely
ignored, meaning if the top half were obscured, the model would likely misclassify it.

Figure A10: The interpretability output for an image in the CRC dataset. From left to right, the
figures shows: the original image, the image with background patches removed, the ground truth
patches for the image’s label, and the interpretability output from MILLI. In this example, the image
is class zero (i.e., non-epithelial), meaning the highlighted patches contain mostly fibroblast and
inflammatory nuclei. As shown here, MILLI has identified that the model is using the same patches
as the ground truth to make a decision, indicating that the model has learnt to correctly identify
fibroblast and inflammatory nuclei as supporting instances for non-epithelial images.
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Figure A11: The interpretability output for a positive image in the CRC dataset. In this example, the
ground truth patches all contain at least one epithelial nuclei. MILLI has identified that the model is
using most of the same patches as the ground truth to make a decision, indicating that the model has
learnt to correctly identify epithelial nuclei as supporting class one.

Figure A12: The interpretability output for a negative image in the CRC dataset. In this example,
the patches are sparse — there are a lot of background patches that are removed, and the key patches
are spread out (as opposed to being connected as in the previous examples). Again, MILLI is able
to correctly identify the patches that support the negative class.

Figure A13: The interpretability output for a positive image in the CRC dataset. In this example,
MILLI has identified some of the ground truth patches, but also additional patches that are not
labelled as epithelial in the ground truth labelling. As the labelling was not exhaustive, these patches
may contain epithelial nuclei without being labelled as such. By using MILLI, it is apparent that
the model is using these patches in its decision-making, therefore further investigation into the types
of nuclei in these patches would reveal more information about how the model makes its decisions;
something that would not be possible without the interpretability output.
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