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Interpretable Multiple Instance Learning

by Joseph Arthur Early

With the rising use of Artificial Intelligence (AI) and Machine Learning (ML) methods,
there comes an increasing need to understand how automated systems make decisions.
Interpretable ML provides insight into the underlying reasoning behind AI and ML
models while not stifling their predictive performance. Doing so is important for many
reasons, such as facilitating trust, increasing transparency, and providing improved
collaboration and control through a better understanding of automated
decision-making. Interpretability is very relevant across many ML paradigms and
application domains.

Multiple Instance Learning (MIL) is an ML paradigm where data are grouped into bags
of instances, and only the bags are labelled (rather than each instance). This is beneficial
in alleviating expensive labelling procedures and can be used to exploit the underlying
structure of data. This thesis investigates how interpretability can be achieved within
MIL. It begins with a formalisation of interpretable MIL, and then proposes a suite of
model-agnostic post-hoc methods. This work is then extended to the specific
application domain of high-resolution satellite imagery, using novel inherently
interpretable MIL approaches that operate at multiple resolutions.

Following on from work in the vision domain, new methods for interpretable MIL are
developed for sequential data. First, it is explored in the domain of Reward
Modelling (RM) for Reinforcement Learning (RL), demonstrating that interpretable MIL
can be used to not only understand a model but also improve its predictive
performance. This is mirrored in the application of interpretable MIL to Time Series
Classification (TSC), where it is integrated into state-of-the-art methods and is able to
improve both their interpretability and predictive performance. The integration into
existing models to provide inherent interpretability means these benefits are delivered
with little additional computational cost.

http://www.southampton.ac.uk
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Instance-level function f

MILLI Interpretability

Coalition vector v

Coalition matrix V

MILLI ranking weight kernel πR

MILLI weight kernel πM

Surrogate model Gc



xvi LIST OF TABLES

Scene-to-Patch Models

Number of extracted patches b

Number of scales (resolution) sn

Patch size p

Scale (resolution) s

Scale 0 (lowest resolution) s = 0

Scale 1 (middle resolution) s = 1

Scale 2 (highest resolution) s = 2

Scale main (combined resolution) s = m

Reinforcement Learning and Reward Modelling

Agent action (at t) at

Agent action space A

Discrete time step t

Environment state (at t) st

Environment state space S

Hidden state dynamics function δ

Hidden state dynamics func. (learnt) δ′

Hidden state (at t) ht

Hidden state (initial) h0

Hidden state (initial learnt) h′
0

State dynamics function D

Return function G

Reward function R

Reward function (learnt) R′

Trajectory ξ

Trajectory class space CTask

Trajectory classification function CTask

Trajectory length T

Trajectory space Ξ

Time Series Classification

Attention module ψATTN

Attention value a

Classifier module ψCLF

Discrete time step t

Feature embedding z

Feature embedding length d

Feature embedding matrix Z

Feature extractor module ψFE

Number of time series channels h

Time series length T



xvii

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been generated
by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree
at this University;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

3. Where I have consulted the published work of others, this is always clearly
attributed;

4. Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as:

(a) Joseph Early, Christine Evers, and Sarvapali Ramchurn. Model agnostic
interpretability for multiple instance learning. In International Conference on
Learning Representations, 2022c. URL
https://openreview.net/forum?id=KSSfF5lMIAg

(b) Joseph Early, Tom Bewley, Christine Evers, and Sarvapali Ramchurn.
Non-Markovian reward modelling from trajectory labels via interpretable
multiple instance learning. Advances in Neural Information Processing Systems,
35, 2022a. URL https://proceedings.neurips.cc/paper_files/paper/

2022/file/b157cfde6794e93b2353b9712bbd45a5-Paper-Conference.pdf

https://openreview.net/forum?id=KSSfF5lMIAg
https://proceedings.neurips.cc/paper_files/paper/2022/file/b157cfde6794e93b2353b9712bbd45a5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b157cfde6794e93b2353b9712bbd45a5-Paper-Conference.pdf


xviii LIST OF TABLES

(c) Joseph Early, Ying-Jung Deweese, Christine Evers, and Sarvapali Ramchurn.
Scene-to-patch Earth observation: Multiple instance learning for land cover
classification. NeurIPS Workshop: Tackling Climate Change with Machine
Learning, 2022b. URL https://arxiv.org/abs/2211.08247

(d) Joseph Early, Ying-Jung Chen Deweese, Christine Evers, and Sarvapali
Ramchurn. Extending scene-to-patch models: Multi-resolution multiple
instance learning for Earth observation. Environmental Data Science, 2, 2023.
URL https://doi.org/10.1017/eds.2023.30

(e) Joseph Early, Gavin KC Cheung, Kurt Cutajar, Hanting Xie, Jas Kandola, and
Niall Twomey. Inherently interpretable time series classification via multiple
instance learning. Internation Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=xriGRsoAza

Signed:.......................................................................... Date:..................

https://arxiv.org/abs/2211.08247
https://doi.org/10.1017/eds.2023.30
https://openreview.net/forum?id=xriGRsoAza


xix

Acknowledgements

First and foremost, I would like to thank my University of Southampton supervisors
Gopal Ramchurn and Christine Evers. Their input through regular meetings and
feedback on my work was invaluable. They gave a great deal of insight and lent their
expertise during all stages of my PhD. In addition, thank you to all those in the AIC
group, the IRIDIS support team, and the Alan Turing Institute’s Academic Services.

Throughout my PhD, I have been fortunate enough to collaborate with many
researchers from different institutions and academic backgrounds. In particular, I
would like to thank Tom Bewley, whom I met through the Alan Turing Institute and
collaborated with on a paper at the intersection of our two PhDs, and Ying-Jung Chen
Deweese, a co-author on two of my published works who supported me through the
Climate Change AI mentorship programme. In addition, I am grateful to have had the
opportunity to work alongside and publish a paper with Gavin Cheung, Kurt Cutajar,
Hanting Xie, Jas Kandola, and Niall Twomey from the Anomaly Detection and Insights
team during my internship with Amazon Prime Video.

My close friends, many of whom are fellow PhD students, have been a continuous
source of inspiration and motivation. From Southampton, I would like to thank Tom,
Leonard, Callum, Loki, Harry, Anna, Spencer, Ella, Eve, Rich, Alex, Greg, and Andrei.
From London, I would like to thank Giulia and Jennifer for joining me in founding and
co-leading the Alan Turing Institute’s Entrepreneurship Interest Group, and all those
who were part of the Turing’s 2019 Doctoral Cohort. I am hugely appreciative of my
oldest friends Matt, Elliot, Cameron, Jamie, and Barney for their ’pastoral’ support and
for reminding me that the world exists outside of academia. My greatest thanks goes to
Amy Jackson, my partner and best friend throughout both of our PhDs — seeing you
become Dr. Jackson a year before me was wonderful to experience and also a source of
great motivation.

I would certainly not be at this stage without the love and inspiration of my wonderful
parents Claire and Lawrence, and my sister Holly. They have always been there for me:
starting with my early adventures in programming (Lego Mindstorms, BASIC Stamp
electronics, and Minecraft modding), through my undergraduate degree, and finally
nodding along when I ramble about my PhD research. Thank you for all your support
and kindness.





xxi

To Mum and Dad, for your inspiration and unwavering support.





1

Chapter 1

Introduction

Tasks we take for granted, for example differentiating between images of cats and dogs,
are very difficult to program. The difficulty in writing software for certain tasks comes
from the fact that it is difficult to define a concrete set of rules that produce a desired
solution. Instead, it is easier to design a system that learns the rules itself. However, we
cannot be certain what such a system will learn, nor is it easy to understand what it has
learnt. Are these systems making the correct decisions, and are they making those
decisions for the right reasons?

The last decade has shown an unprecedented increase in the use of Artificial
Intelligence (AI) and Machine Learning (ML) in research and industry. Owing to
improvements in computing power and the greater availability of large, rich datasets, it
is now possible to develop powerful autonomous systems that can complete an
ever-increasing number of complex tasks. Due to the increased autonomy of the
systems and their inherent complexity, it becomes more difficult (and more important)
for human supervisors to ascertain the system’s intentions and decision-making process.
This leads to the need for autonomous systems to be able to explain their decisions in
order to facilitate human understanding of a system’s decision-making process.

The difficulty in understanding how an autonomous system makes decisions is partly
due to the complexity of the system. With simpler models, such as linear regression, it is
possible to understand the role of each individual parameter and how they affect the
overall decision-making process. However, with complex systems such as neural
networks, this inherent understanding is lost. Therefore, in order to utilise these more
complex, powerful models to solve difficult tasks, Explainable AI (XAI) and
interpretable methods are required. This trade-off between predictive performance
(how capable the model is of achieving strong performance on difficult tasks) and
interpretability (how readily the model can be inherently understood) is summarised in
Figure 1.1.
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FIGURE 1.1: The predictive power vs interpretability trade-off.
Left: A general overview of the trade-off. As model complexity increases, models be-
come more powerful (greater predictive performance) but sacrifice their interpretability.
For example, it is more difficult to interpret a neural network than a linear regression
model, but the former can achieve strong performance on more difficult tasks. Ideally,
we want models that are both highly interpretable and powerful (indicated with the
star in the top right).
Right: An actual example of this trade-off from the research presented in this thesis.
Forgoing the specific details for now, the general trend is that as model complexity
increases across the three models (FCN to RN to IT, with FCN being the least com-
plex), predictive performance improves while interpretability decreases. However,
the MILLET method (proposed in this thesis) is able to boost interpretability whilst
maintaining predictive performance for the IT and FCN models, moving towards the
desired location in the top right. For more details on this diagram, see Chapter 7.

The terms interpretability and explainability are often used interchangeably, but strictly
there is a difference between the two. Model interpretability involves understanding the
inner workings of a system, i.e., ‘opening the black box’, whereas explainability focuses
on producing explanations that are similar to those a human would use. Interpretability
often produces technical evaluations of decision-making, which can only be properly
understood by domain experts. Whilst these interpretations can be useful in some
contexts, further steps are required to produce explanations that are appropriate for a
non-technical audience.

Multiple Instance Learning (MIL) is a specific paradigm in the wider scope of ML.
Unlike traditional supervised learning, where each piece of data is given a label, MIL
uses data that is grouped into bags, where each bag has a label. This makes labelling
data more efficient, as each of the instances within a bag does not need to be labelled,
only the bag as a whole — see Figure 1.2 for an overview. This is particularly important
with the large-scale datasets that are often used in modern machine learning —
developing methods that work with weaker labels (such as those in MIL) reduces both
labelling time and cost.

Beyond reducing labelling costs, an additional benefit of MIL is that it is able to exploit
underlying structure in data. For example, as explored in Chapter 7, additional
information such as temporal relationships and structure is often discarded during
training/inference. MIL is able to utilise such structure to achieve improved predictive
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FIGURE 1.2: In this overview of MIL, two versions of a binary classification problem
are presented. In the standard (single instance) supervised learning case, images
representing the digit 9 are labelled as class 1, and all other digits are labelled as class
0. The model takes a single image as input as predicts class 0 or 1. For the MIL case,
images are grouped into bags, and a bag is given the label of class 1 if it contains a 9,
otherwise, it is labelled as class 0. This represents the same underlying classification
problem, but labelling only occurs at the bag level, i.e., the individual images are
unlabelled. One advantage of the MIL, from a labelling perspective, is that a bag can be
labelled once a single 9 is observed, i.e., the human labeller does not need to label every
single 9. The model then takes a bag as input and makes a prediction of class 0 or 1. In
the example shown here, replacing the 2 with a 9 changes the model’s prediction from
class 0 to class 1. Note MIL bags can be much larger than the sizes (2 or 3 instances)
shown here. Images of digits taken from MNIST (Lecun et al., 1998).

performance. Furthermore, as discussed in Chapter 4, MIL problems can be used
capture relationships between instances, such as co-occurrence, and through
interpretability, these relationships can be uncovered.

In the context of MIL, interpretability is about understanding which of the instances
within a bag were used to make decisions. The number of key instances in a bag (those
that determine the bag label) is dependent on the specific MIL problem and domain.
Many instances with complex relationships could determine the bag label, or it could be
that a single instance in a bag is all that matters. Interpretable MIL approaches need to
be flexible enough to deal with this variation, along with several other requirements (as
explored in Chapter 4).

In the remainder of this introduction, the research questions explored in this thesis are
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outlined (Section 1.1), followed by the research contributions (Section 1.2). Finally, the
structure of the remainder of the thesis is presented (Section 1.3).

1.1 Research Questions

The research presented in this thesis answers three open research questions:

1. What is an appropriate definition of MIL interpretability, and how can it be
evaluated?
While prior works (Ilse et al., 2018; Liu et al., 2012; Tu et al., 2019; Wang et al.,
2018) had some notion of MIL interpretability, it was not rigorously defined or the
main focus of the research. Rather, interpretability was considered a secondary
outcome of new methods and often not formally evaluated. Typically,
interpretability in existing MIL work was presented as visualisations of
decision-making, which, while somewhat insightful, lacked the rigour and
consistency to facilitate comparisons between methods.

2. How can the labelling benefits of MIL be further utilised, and what does this
mean for interpretability?
As stated above, MIL does not require labelling for all data instances. Instead,
data are grouped into bags, and only the bags need to be labelled. This means
labelling data becomes faster and cheaper. A prime example of this is in MIL for
histopathology, where each image only requires a high-level label rather than
annotations for every nuclei (Hashimoto et al., 2020; Ilse et al., 2018; Javed et al.,
2022; Li et al., 2021a; Li and Zhang, 2020; Marini et al., 2021). Much of the existing
MIL research is focused on vision classification, so an open question is whether
similar MIL benefits can be found in other domains.

3. As well as facilitating understanding of automated decision-making, can MIL
interpretability be utilised to improve underlying model performance?
While gaining insight into how a model makes decisions is the primary goal of
interpretability, it has further use cases. One such extension is leveraging
interpretability to improve the performance of the underlying model, i.e., by
improving interpretability, can we also improve performance? Answering this
question aims to overcome the view that improving interpretability must always
come at the detriment of predictive performance.
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1.2 Research Contributions

To answer RQ1, the notion of MIL interpretability is formalised, which involves
considering the interactions between instances and how they affect the bag label (a
common assumption in existing literature is that instances could be treated
independently). Through a novel concrete evaluation with respect to these new
requirements, existing approaches were found lacking, and as such a suite of new
approaches to MIL interpretability is proposed — these are presented in Chapter 4.

An alternative ML paradigm to classification is semantic segmentation, where the
objective is to predict a class for every pixel in an image. This typically requires the use
of segmentation masks during training. Creating these masks is a time-consuming and
expensive labelling process. As such, the use of interpretable MIL for semantic
segmentation of high-resolution images is investigated, which does not require these
segmentation maps, and contributes towards answering RQ2. This was done
specifically in the domain of Earth Observation (EO) for climate change applications.
Included is a proposal of novel MIL model architectures to utilise multi-resolution
inputs, which was shown to improve the quality of visual interpretations. This research
is presented in Chapter 5.

To further answer RQ2 and also answer RQ3, MIL methods are developed for use with
sequential data. In Reward Modelling (RM) (Reinforcement Learning (RL) from human
feedback), interpretable MIL models are proposed that not only demonstrated
improved insight into the effect of reward in RL but also produced interpretations that
can be fed back into the agent training process to improve performance. This research is
presented in Chapter 6. This idea was further explored during a research internship at
Amazon, through the creation of new interpretable MIL methods for Time Series
Classification (TSC) — a domain where MIL is readily applicable but only has a limited
use in prior work. In both RM and TSC, the sequential nature of data lends itself to a
MIL representation. For this next phase of research, a key focus was leveraging the
ability of existing models and developing ‘plug-and-play’ MIL interpretability that could
be applied to a wide range of existing State-Of-The-Art (SOTA) methods. This is
presented in Chapter 7.

Each of the above research contributions has been published in peer-reviewed
conferences and/or journals:

1. Joseph Early, Christine Evers, and Sarvapali Ramchurn. Model agnostic
interpretability for multiple instance learning. In International Conference on
Learning Representations, 2022c. URL
https://openreview.net/forum?id=KSSfF5lMIAg (Chapter 4).

https://openreview.net/forum?id=KSSfF5lMIAg
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2. Joseph Early, Ying-Jung Deweese, Christine Evers, and Sarvapali Ramchurn.
Scene-to-patch Earth observation: Multiple instance learning for land cover
classification. NeurIPS Workshop: Tackling Climate Change with Machine Learning,
2022b. URL https://arxiv.org/abs/2211.08247 (Chapter 5).

3. Joseph Early, Ying-Jung Chen Deweese, Christine Evers, and Sarvapali Ramchurn.
Extending scene-to-patch models: Multi-resolution multiple instance learning for
Earth observation. Environmental Data Science, 2, 2023. URL
https://doi.org/10.1017/eds.2023.30 (Chapter 5).

4. Joseph Early, Tom Bewley, Christine Evers, and Sarvapali Ramchurn.
Non-Markovian reward modelling from trajectory labels via interpretable
multiple instance learning. Advances in Neural Information Processing Systems, 35,
2022a. URL https://proceedings.neurips.cc/paper_files/paper/2022/

file/b157cfde6794e93b2353b9712bbd45a5-Paper-Conference.pdf

(Chapter 6).

5. Joseph Early, Gavin KC Cheung, Kurt Cutajar, Hanting Xie, Jas Kandola, and Niall
Twomey. Inherently interpretable time series classification via multiple instance
learning. Internation Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=xriGRsoAza (Chapter 7).

In addition, I have collaborated on other papers during my PhD that are beyond the
scope of this thesis:

1. Saqib Rahman, Joe Early, Matt De Vries, Megan Lloyd, Ben Grace, Gopal
Ramchurn, and Timothy Underwood. Predicting response to neoadjuvant therapy
using image capture from diagnostic biopsies of oesophageal adenocarcinoma.
European Journal of Surgical Oncology, 47(1), 2021a. URL
https://www.sciencedirect.com/science/article/pii/S0748798320309197.

2. Chris Reed, Keri Grieman, and Joseph Early. Non-Asimov explanations regulating
AI through transparency. Nordic Yearbook of Law and Informatics, 2021. URL
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3970518.

3. Saqib Rahman, Joseph Early, Ben Sharpe, Megan Lloyd, Matt De Vries, Ben Grace,
Sarvapali Ramchurn, and Timothy Underwood. Predicting survival and response
to therapy using diagnostic biopsies: A machine learning approach to facilitate
treatment decisions for oesophageal adenocarcinoma. British Journal of Surgery,
108, 2021b. URL https://doi.org/10.1093/bjs/znab430.185.

4. Sarah Ahmed, Tayyaba Azim, Joseph Early, and Sarvapali Ramchurn. Revisiting
deep Fisher vectors: Using Fisher information to improve object classification. In
33rd British Machine Vision Conference BMVC. BMVA Press, 2022. URL
https://bmvc2022.mpi-inf.mpg.de/0900.pdf.

https://arxiv.org/abs/2211.08247
https://doi.org/10.1017/eds.2023.30
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1.3 Thesis Structure

The remainder of this thesis is split into three parts:

Part I: Preliminaries The first part of this thesis covers the necessary required
knowledge prior to presenting the novel research. Chapter 2 introduces general ML
concepts for supervised learning, such as data, models, training, and the practicalities of
ML (e.g., data cleaning and hyperparameter selection). These general concepts are
continually revisited in the remaining chapters. Following the background, Chapter 3 is
a literature review of the two key topics covered in this work: interpretability and MIL.
General interpretability literature is first explored, followed by a review of MIL and a
discussion of how interpretability is applied in MIL.

Part II: Interpretable Multiple Instance Learning for Vision: The next two chapters
present research on interpretable MIL for applications in vision. Chapter 4 details a
suite of novel approaches to general MIL interpretability, which is applicable to all MIL
models. Chapter 5 then dives into a more focused problem, looking at the application of
interpretable MIL to EO datasets. This includes the development of novel interpretable
multi-resolution methods.

Part III: Interpretable Multiple Instance Learning for Sequential Data: Following
the focus on computer vision applications, the next research section focuses on a
different domain of problems: sequential data. First, Chapter 6 explores the application
of interpretable MIL to reward modelling in RL problems. This is followed by Chapter 7
which proposes new methods for TSC (again using interpretable MIL). In both of these
chapters, a key difference to the vision research is the notion of temporal ordering and
dependency in the data — RM and TSC both involve sequential data representations
through time, which impacts the type of predictive models that are used and has
implications for MIL interpretability.

https://dl.acm.org/doi/10.5555/3545946.3598821
https://script-ed.org/?p=4109
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An overall concluding discussion is given in Chapter 8, providing a retrospective
analysis of the research presented in this thesis and discussing remaining open
challenges in the field of interpretable MIL. Appendices A to D contain additional
information organised by research chapter.
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Part I

Preliminaries
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Chapter 2

Background

This chapter introduces the relevant background for this thesis. It focuses on the key
concepts of supervised Machine Learning, laying the foundation for a literature review
of Multiple Instance Learning and interpretability in the next chapter. Specifically, this
background covers models and data (Section 2.1), training (Section 2.2), neural
networks (Section 2.3), and the practicalities of Machine Learning (Section 2.4).
Throughout this chapter, a running example of classifying images of huskies and tigers
is used to aid understanding.
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2.1 Models and Data

In supervised Machine Learning (ML), a piece of labelled data is an item x (an image,
feature vector, video, time series, etc.) with an associated label y. An ML model receives
x as an input and processes it to produce a prediction ŷ. Without loss of generality, both
x and ŷ can be considered vectors of some arbitrary size. Later, we will use more precise
notation for domain-specific definitions. Given the space of all possible inputs X and
possible predictions/labels Y , an ML model M is a function M : X → Y . The objective
of ML is to learn the function that provides the correct mapping for a particular task.

Running Example: Supervised Learning

Consider an ML model that is intended to classify pictures of huskies and tigers.
An input x ∈ X is a picture of a husky or a picture of a tiger, and a prediction
ŷ ∈ Y is a binary indicator of 0 for husky and 1 for tiger (this is a simplification
of model output; see Section 2.2.1). Therefore, the input space X consists of all
possible images of huskies and tigers, while the label space is defined as Y ∈ Z2.

In supervised learning settings, learning the correct function for M (also known as
‘fitting’ or ‘training’ the model) is achieved by leveraging labelled data. A training
dataset DTrain contains (x, y) pairs — each x ∈ X has a (correct) label y ∈ Y . The
process used to create these labels could be manual (e.g., requiring expert human
knowledge) or generated by some other automated process (e.g., web scraping).

As a minimum, supervised ML problems are set up with two dataset splits: a training
set and a test set. The testing dataset DTest is similar to DTrain but it is not used when
fitting the model M. Instead, it is only used for evaluation. This helps identify model
overfitting, where M performs very well on DTrain but not on DTest, i.e., it does not
generalise beyond the data it has already seen. Typically, overfitting means M has learnt
spurious rules that do not accurately capture the relationship between X and Y . This is
also something that can be identified through interpretability.

The actual train/test split used is somewhat arbitrary. However, it is essential to ensure
that there is no data leakage, where information from the test dataset is used during
training. The original data can be considered as one monolithic collection of (x, y) pairs,
with the division into training and testing data later chosen at random. A typical
two-way split is 80/20, where 80% of the data is used for training and 20% is used for
testing. Stratified sampling over Y is often used to preserve the label distribution.
Assuming all the data is unique, there is no overlap between the training and testing
datasets, and thus no data leakage.

A further extension to train/test splits involves using a validation dataset DVal . The test
dataset DTest should only be used for evaluating the final model performance.
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Therefore, the validation dataset DVal is useful for additional tasks such as
hyperparameter tuning (see Section 2.4.3). Using DTest for such a task would be a form
of data leakage. A typical division of the original monolithic dataset when using a
validation dataset is 80/10/10, but this could vary depending on the amount of data.

Various extensions to dataset sampling exist. One such method is k-fold
cross-validation, which partitions the monolithic dataset into k groups. Each group acts
in turn as DTest, with the remaining k − 1 groups combining to form DTrain — this
results in k training repeats. As such, it helps measure the variation in performance due
to changes in training data.

Running Example: Datasets

For the huskies and tigers problems, imagine we have 500 images of huskies and
500 images of tigers, and that we have the correct label for each image. For use with
most ML models, the images would need to be the same size (which can be achieved
through resizing/cropping). These images form our original monolithic dataset of
1,000 (x, y) pairs, where each x is one of the images, and each y is the binary label
of 0 for husky and 1 for tiger. An 80/20 train/test split would mean training on
800 (x, y) pairs and evaluating on 200. If we did this we stratified sampling, DTrain

would contain 400 husky images and 400 tiger images, while DTest would contain
100 husky images and 100 tiger images.

2.2 Training

Below we discuss the different processes involved in training ML models. We first
introduce training for classification problems (Section 2.2.1), and then for regression
problems (Section 2.2.2), as both are explored in the research chapters of this thesis. We
then discuss evaluation metrics in Section 2.2.3.

2.2.1 Classification

The label space Y is defined by the problem that is being solved. For classification
problems, each piece of data belongs to one of C classes, so Y ∈ ZC. However, the
model output space may not align with the label space. The output of a predictive
model, z ∈ RC = M(x), is a vector of unnormalised values known as logits. These
logits can be normalised to a set of probabilities using the softmax function
σ : RC → (0, 1)C.

The softmax normalised output has the property that the sum over classes is equal to
one, i.e., ∑C−1

c=0 σ(z)c = 1. While these probabilities are more easily comparable than the
raw logits (as they are normalised), they are not guaranteed to be a robust measure of
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model confidence. However, for both logits and probabilities, the class with the greatest
value is considered the model’s top prediction for the input x. As such, the predicted
class ŷ ∈ Y = argmax(M(x)).

Running Example: Model Outputs

In our huskies and tigers example, the output of our model M is a vector of length
two: M(x) ∈ R2. If the model output (logits) are M(x) = [1.5,−2.1], then the
softmax probabilities are [0.973, 0.027]. The predicted class from these outputs,
ŷ = argmax(M(x)) = 0, which corresponds to the husky class.

2.2.2 Regression

For regression problems, each piece of data is associated with a single real-valued
number, Y ∈ R, or d real-valued numbers Y ∈ Rd. Regression outputs are not typically
normalised, so the model’s output is in the same space as the labels. However, in some
domains, it can be appropriate to consider the upper and lower bounds of the space, for
example strictly positive values.

Running Example: Animal Weight

Our running example is a binary classification problem. As an example of a re-
gression problem, imagine the input data remains the same (pictures of tigers and
huskies), but the data are now labelled with the weight of the animal. The label
space is now Y ∈ R+ (positive real values). It is possible to extend this to any
number of output dimensions. For example, the labels could be the animal’s height
and weight, which would make the label space Y ∈ R2

+.

2.2.3 Metrics

Metrics are used for two purposes in ML: for training (optimisation) and as measures of
performance. One metric that is typically used for training classification models is
cross-entropy loss. As this is a loss, lower values are better. Cross-entropy loss is
applied to the unnormalised logits, i.e., the raw model outputs z = M(x).1 For a piece
of data with label y (the class index), the cross-entropy loss is:

CrossEntropyLoss(z, y) = − log
ezy

∑C−1
c=0 ezc

. (2.1)

1This follows the convention used by PyTorch, which is the ML library used in this work. PyTorch makes
a distinction between cross-entropy loss and negative log-likelihood loss: the former uses unnormalised
logits, and the latter uses log probabilities. See https://pytorch.org/docs/stable/generated/torch.nn.
CrossEntropyLoss.html and https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html.

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html


2.3. Neural Networks 15

When using the cross-entropy loss, a model is rewarded for producing a high logit
value for the correct class y and low logit values for the other classes. A value close to
zero when averaged over an entire dataset suggests the model is performing well.
However, it remains difficult to understand exactly what certain loss values mean (other
than lower is better).

Other metrics are more readily understandable than cross-entropy loss. Such metrics
include accuracy and balanced accuracy — the latter weights the performance by the
class distribution, meaning it is a better measure for unbalanced datasets. Other metrics
include precision, recall, and the F1 score. The best choice of metric is dependent on
several factors such as dataset imbalance and the importance of avoiding false positives.

Running Example: Evaluation

We can evaluate a model trained on our tiger and huskies example using cross-
entropy loss and accuracy. Before training, we would expect the model to have a
high cross-entropy loss and an accuracy of around 0.5 as it is making predictions at
random. After training, if the model has learnt to classify the images correctly, we
would expect to see a cross-entropy loss close to zero and accuracy nearing 1. In this
case, we are using a balanced dataset (an equal number of tigers and huskies), so
balanced accuracy will be the same as accuracy. However, if our dataset contained
90% tigers, the model could achieve a high accuracy of 90% by always predicting
tigers (without having to learn anything), but the balanced accuracy would be 50%,
showing the model’s true performance.

For regression problems, metrics such as accuracy cannot be applied. Instead,
alternative measures are to evaluate the difference between true and predicted values.
Example metrics include Mean Absolute Error (MAE), Mean Square Error (MSE), and
Root Mean Square Error (RMSE). These are typically applied directly to the network
outputs.

2.3 Neural Networks

Thus far in this chapter, we have remained agnostic to the model M that is used for
performing classification or regression. While many different types of models can be
used, here we introduce neural networks as they make up the vast majority of models
used in this thesis. As we later explore, neural networks are widely used in Multiple
Instance Learning (MIL) and are often State-Of-The-Art (SOTA) MIL methods.

Neural networks are constructed in layers, with information flowing from the input
layer, through one or many hidden layers, and finally through an output layer which
produces logits (see Section 2.2.1). The networks can be considered a collection of
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weights (parameters) that determine how the input is transformed into the output.
Initially, these weights are set to random values, but through the course of the learning
process, they converge to a set of values that produces the desired output. At the heart
of the learning is backpropagation, where the predictive error (e.g., cross-entropy loss
Equation 2.1) is used to adjust the network’s weights such that future predictions will
predict the correct label. With sufficient labelled data and epochs of training (where one
epoch is an iteration through the entire training dataset), the weights are sufficiently
adjusted such that the correct predictions occur. For details on the history of neural
networks, see Schmidhuber (2015).

Many different flavours of neural networks exist. However, the same principles such as
backpropagation and optimisation of a loss function underpin the vast majority of
supervised learning models. The neural network architectures/modules that have
relevance to this thesis are convolutional layers (neural networks for images), recurrent
layers (neural networks with a form of internal memory), and attention
(increasing/decreasing the importance of certain inputs). These will be discussed in
greater detail in the relevant later chapters.

Running Example: Neural Network Architecture

For the tigers and huskies example, a simple neural network architecture could be
designed as follows. Firstly, as the input data are images, the first few layers would
be convolutional. These function as a Feature Extractor (FE) to reduce the input
image to a feature vector. Several fully connected layers could be used to perform
further processing and reduce the number of features. Finally, the output layer
would be of length two as we are performing binary classification: one output gives
the logit for a husky prediction, and the other for a tiger prediction.

2.4 Practicalities of Machine Learning

There are several other factors to consider when designing, training, and evaluating ML
models. These are the more practical or engineering elements of ML that ensure it
works in practice. Below we discuss four key areas of practicality that reoccur in this
thesis. A brief overview is provided in each case; the realisation of these details is
provided in later chapters as they are domain-specific.

2.4.1 Data Preparation

The performance of any model is constrained by the data it is trained on. Poor quality
(e.g., blurry images), insufficient quantity, and incorrect labels are all detrimental to the
training process and overall performance of the model. Fortunately, many high-quality
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datasets for a wide variety of domains already exist, but data preparation is still an
important part of all ML pipelines.

Insufficient data is a common occurrence in ML, but there are approaches that facilitate
dataset expansion without having to gather more data and label it, such as augmenting
the data via transformations (e.g., image cropping and rotation). There can also be a lack
of data for certain classes, meaning these classes are underrepresented in the data and
thus the model may struggle to learn them correctly — this is known as class imbalance.
Data augmentation and balancing approaches can be used to overcome this problem.

Data normalisation is another key aspect of data cleaning. Neural networks (see
Section 2.3) work best when data is normalised, i.e., with a mean of zero and standard
deviation of one. This is also beneficial in ensuring consistency across features that may
have different value ranges.

Running Example: Data Normalisation and Augmentation

A typical data normalisation approach in ML is to subtract the dataset mean and
divide by the dataset standard deviation. For the huskies and tigers example, the
mean and standard deviation of the pixel values would be calculated and used to
normalise each image. The training dataset size could also be expanded through
image augmentation techniques such as horizontal flipping and random cropping.

2.4.2 Training Improvements

In addition to improving the quality of data that an ML model is trained on, further
performance gains can be achieved by modifying the training procedure. A common
change is to only update the model’s weight via backpropagation after processing a
‘batch’ of data. This smoothes out the weight updates performed during training, as the
gradients used in backpropagation are averaged over the batch. This also benefits
training speed, as fewer weight updates are used and the data within a batch can
typically be processed by the model in a single pass. A further training improvement is
early stopping, when the model performance on a validation set is measured to avoid
overfitting. If the validation set performance starts increasing (typically the training set
performance would still be decreasing), the model has begun to overfit, and training
should be terminated.
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Running Example: Training Configuration

The tigers and huskies problem could be configured with an 80/10/10 dataset split,
which would facilitate the use of early stopping. Rather than pick a maximum
number of epochs, we train the model until the validation set accuracy begins to
decrease (at which point the model is overfitting the training data). A patience
value (number of epochs) should also be included to verify that this is a consistent
decrease, otherwise training may terminate prematurely. We would also need to
decide on a batch size — typically this is determined by the amount of memory
available, the model size, and the size of each piece of data. Values such as 16, 32,
64, or 128 are usually appropriate for these types of computer vision problems.

2.4.3 Hyperparameter Selection

The ML training process has many hyperparameters. These are different to model
parameters which are learnt during training. Instead, hyperparameters are specified
prior to training. Examples include the learning rate (how much the model’s parameters
are adjusted for each training pass) and the number of epochs (how long the model is
trained for). While these parameters can be manually set (or have suggested default
values), hyperparameter optimisation methods can be used to find ideal values that
lead to the best overall model performance. For example, training for too few epochs
means the model performance has not converged (i.e., its overall performance could be
improved), but training for too many epochs means the model is likely to overfit to the
training dataset and perform worse on the test dataset. Hyperparameter optimisation
can also be applied to the other aspects mentioned above, such as finding the ideal
batch size and what type of data augmentation/normalisation is most appropriate.

Running Example: Hyperparameters

Once some level of performance has been achieved in our tigers and huskies exam-
ple, i.e., once it is demonstrated that the model is learning something, hyperparam-
eter optimisation can be used to further improve the model. Tuning values such
as the learning rate, batch size, and early stopping patience should lead to better
performance. However, these values typically cannot be treated independently,
so a hyperparameter optimisation framework is required — less expensive than a
complete search over all possible parameter combinations, but likely to find better
combinations than tuning parameters individually. Additional elements of the ML
solution could also be changed, such as altering the network architecture.

Given this background to supervised ML, in the next chapter, we conduct an extensive
literature review on interpretability and MIL.
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Chapter 3

Literature Review

This chapter provides a comprehensive literature review of interpretability and
Multiple Instance Learning. We begin with interpretability (Section 3.1), covering topics
such as motivation, causality, and methods. This is followed by Multiple Instance
Learning (Section 3.2), discussing data structure, paradigms, assumptions, and methods.
Of particular note is Section 3.2.5, which explores the intersection of these two areas and
lays the foundations for the research chapters presented later in this thesis.
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3.1 Interpretability

Understanding how Machine Learning (ML) systems make decisions is crucial in
facilitating the widespread adoption of Artificial Intelligence (AI). Without an
understanding of how automated systems make decisions, especially when those
decisions affect the end user, there can be little or no trust in the systems. Explainable
AI and interpretable ML are two research areas that aim to address the difficulties in
understanding the automated decision-making process and how best to communicate
said understanding to different audiences. In the following sections, we first review the
difference between interpretability and explainability (Section 3.1.1), and then provide
the key motivators for interpretability (Section 3.1.2). Next, we discuss interpretability
from a social sciences perspective (Section 3.1.3) and a causal perspective (Section 3.1.4).
Finally, we explore existing interpretability methods (Section 3.1.5).

3.1.1 Interpretability vs Explainability

The concept of explainability is not new. Philosophers have reasoned about how
humans explain things, and ideas from the social sciences can be used as a guide for
explainability in AI — both for working out how to get automated systems to explain
things, but also understanding how humans perceive their artificial counterparts,
allowing human-machine communication to be more effective.

From a social sciences perspective, (Miller, 2019) suggests there are two processes in an
explanation: a cognitive process and a social process. The cognitive process identifies the
causes of an event and selects an appropriate subset to form some sort of explanation.
Using the product of the cognitive process as the basis for communication, the social
process involves the transfer of knowledge between the explainer and the explainee,
using some form that is most appropriate for the target audience and the conditions
under which the explanation must be provided (e.g., time constraints). An advantage of
this framework is that it separates the method of explanation from how it is
communicated; different audiences (e.g., domain experts vs children) require different
explanations, and the explanations provided may also change based on context.
However, the underlying causes and reasoning that were used to make a decision
remain the same, so all that needs to change is the communication method, not the
underlying causes. This definition is also flexible enough to apply to both humans
explaining their actions and AI systems explaining theirs.

Interpretability can be considered the first step of this explanation process (the cognitive
process). The outputs of interpretability methods are often technical and likely removed
from human reasoning, i.e., depending on the context, they may only be useful to
domain experts or AI practitioners. While they do represent a system’s decision-making,
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the interpretations only form part of the process of explaining a system’s actions
(Rosenfeld and Richardson, 2019). The social process is then required to transform these
technical interpretations into something more digestible and appropriate for a
particular audience, i.e., interpretability + social process = explainability.

In this thesis, we focus on the interpretability rather than explainability. While some
effort is made to communicate the resulting interpretations (e.g., through visualisation),
thorough consideration and rigorous evaluation of the efficacy of said outputs is not
undertaken. This would require further research and likely involve evaluation with
human participants, see Section 8.2. In the next section, we outline why it is important
to develop interpretations of AI systems.

Running Example: Interpretability vs Explainability
In Figure 3.1, we provide a demonstrative example of the difference between inter-
pretability and explainability using the tigers vs wolves example. It begins with the
data and model prediction (in this case a correct prediction). The interpretability
method (cognitive process) then produces a saliency mask which highlights the
regions that were used in the model’s decision-making process. The social process
then provides a textual explanation alongside this interpretation for two different
audiences (technical and non-technical).

FIGURE 3.1: An example of the difference between interpretability and explainabil-
ity. The interpretability method in this example is a mock saliency mask, which
can be imagined as a pixel or super-pixel output that indicates the importance of
different image regions for the model’s decision on a scale of between 0 (not im-
portant) and 1 (important). Tiger image sourced from https://www.pexels.com/

under an open license.

3.1.2 Motivation

At its core, the main motivation for interpretability is understanding how and why an
automated system makes decisions, especially those that have a large impact on the real
world. As the system learns to make its own decisions, the reasoning behind its actions
is not necessarily explicit, i.e., the system’s actions cannot be inherently understood
without additional information. This is especially true in complicated domains, where it
can be hard to understand why a certain decision was made given a complex input.
Some further key drivers of explainability research have previously been identified

https://www.pexels.com/


22 Chapter 3. Literature Review

(Anjomshoae et al., 2019; Fox et al., 2017). We outline several key motivations below,
with a focus on facilitating better relationships between automated systems and
humans, as well as improving the efficacy of the systems themselves:

Transparency Some simple ML models can be considered transparent or inherently
interpretable, i.e., it is possible to understand how they make decisions without
requiring any extra information or processing (Guidotti et al., 2018). For example, linear
models and small decision trees are inherently transparent, assuming the user has a
good understanding of the input data. Transparency is lost when the input data doesn’t
represent coherent, understandable features, for example, if it has been pre-processed in
such a way that the original features are lost (e.g., certain types of dimensionality
reduction). It is also possible to argue that these models do not guarantee transparency
unless they are sufficiently small (Lipton, 2018). Rosenfeld and Richardson (2019) state a
model is transparent only if it is inherently understandable without the need for
another tool. Such transparency is also audience- and context-dependent, i.e. it may be
transparent for some end users but not others.

Trust The systematic literature review by Anjomshoae et al. (2019) found that
transparency and trust were two of the most prominent drivers in explainability
research. They are closely related, as both are designed to increase the user’s confidence
that a system is working as intended by understanding the reasoning behind its
decisions. The importance of fostering trust is that it allows human operators to reduce
their workload by giving AI systems more autonomy. This is especially crucial in
scenarios where the automated systems are better suited than humans for the task at
hand (Wang et al., 2016).

Collaboration When humans and automated systems collaborate, there is some
common goal that they are working towards. However, each member of the team may
have their own individual sub-goals which must be reconciled in order to achieve
efficient performance towards the overall goal. One key element of collaboration is
communication — it allows each team member to understand the other’s sub-goals and
is the medium through which the other motivators for explainability can be achieved.
However, communication is not as simple as sharing all the information a system has
and assuming the end user can disentangle and make sense of it — this could overload
the human if there is a large amount of complex data (Li et al., 2016). To achieve strong
collaboration, the communication between automated systems and humans must be
focused and appropriate given various constraints such as time and cost of
communication. By providing coherent explanations about reasoning, explainability
decreases the burden on the end user to interpret the actions of the automated system,
which makes collaboration easier.
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Running Example: The Need for Interpretability
Figure 3.2 presents a motivating example of why interpretability is required in ML
systems. A method may have a high level of predictive performance but have
learnt a spurious correlation between the input images and their labels; in this
example using the background to identify the class rather than using the animal in
the foreground. The model would then fail on valid images where this spurious
correlation does not hold; in this example when the animals are presented in
different backgrounds to the training data. Without interpretability, it is difficult to
verify and therefore trust that the model is not using a spurious correlation such as
the background colour.

FIGURE 3.2: A motivating example for interpretability in the tigers and huskies
example. If the images in the training data are all similar to the images shown in
the first three columns, then it is valid (and likely) for an ML approach to simply
learn the colour of the background: white indicates husky, and green/brown
indicates tiger. However, if the test data contains images similar to those in the
final column, the model will make incorrect predictions as the backgrounds are
flipped. Tiger and husky images sourced from https://www.pexels.com/ under
an open license.

Intent Communication As an extension of communication to facilitate collaboration,
another motivation for explainability is intent communication (Fukuchi et al., 2017;
Hayes and Scassellati, 2013). When working in teams, people construct mental models
of how other members of their team will act in certain situations, i.e., they build up a
‘picture’ of how they expect their teammates to act. This is true even for robotic or
virtual team members. An artificial system that enables human co-workers to
understand its actions through explanations leads to a more accurate mental model,
facilitating better decision-making and avoiding harmful misunderstandings (Hayes
and Scassellati, 2013). The use of explanations goes beyond providing an understanding
of a recent decision — it improves the ability of human collaborators to predict the
actions of an automated system in the future, allowing better collaboration and
planning (Fukuchi et al., 2017).

Control Despite acting autonomously, ML systems must still provide some degree of
control to human users, whether it be completing tasks assigned to them or allowing a
user to override the system — they are never acting completely independently

https://www.pexels.com/
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(Holliday et al., 2013). Some level of control is retained by human users in order to
ensure the goals of the system are aligned with the human’s. Adjustable autonomy
takes strides towards providing different levels of user control, but explainability allows
it to go a step further. If an automated system makes a mistake, the user may feel they
have a lack of control as they do not understand why the system got something wrong.
However, if the system explains its reasoning, the user can better understand why the
mistake was made, which restores a sense of control.

Debugging A final theme is using explanations as a development tool on top of
traditional debugging. In ML development, debugging is more advanced than simply
removing errors in the software — the software could be error free but the system still
may not function as intended due to the nature of what it has learnt and how it makes
decisions. Interpretations allow for insight that goes beyond the software
implementation itself, i.e., looking at the system’s reasoning rather than the mechanism
(Hindriks, 2012). This could lead to adjustments in training or exposure to new data
that improves the system’s functionality. Explanations also make it possible to test
systems without having to run them in all possible scenarios, something that is often
impossible in practice (e.g., self-driving cars could find themselves in an infinite
number of situations; there is no way to test them all).

Beyond the key themes outlined above, there are some additional motivations for
interpretability and explainability. In the EU’s GDPR legislation, the end users and
those affected by autonomous systems have a “right to explanation”, indicating
explainability is also motivated by legal requirements (Voigt and von dem Bussche,
2017). However, under the GDPR legislation, this is a non-binding requirement, and a
simple overview of the system is likely to be sufficient as far as legality is concerned
(Wachter et al., 2017). The more recent EU AI Act includes notions of transparency and
human oversight, implying a need for explainability (Panigutti et al., 2023). Regulation
of AI is still an ongoing process, and additional legislation further down the line will
likely include more specific requirements for interpretability/explainability.

The use of autonomous systems in industry presents additional motivations beyond
research-based objectives. In consumer markets where automated systems are used
(e.g., virtual assistants and advertising), interpretability can lead to an increased
likelihood of use and therefore better sales (Haynes et al., 2009). The competitive edge
granted by explainable systems also helps industry conform to fair and ethical
standards by proving that the reasons behind the decision-making process do not
discriminate (Lipton, 2018).

The motivation for explainability and interpretability given above have an AI heavy
focus. However, additional motivation and information about the requirements of
interpretability can be gained by utilising knowledge from the social sciences on how
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humans communicate and understand each other. In the next section, we delve into
explainability and interpretability from a social sciences perspective.

3.1.3 A Social Sciences Perspective

Humans tend to observe others and attribute mental states to them in order to
understand their reasoning and better predict their future actions. The internal
mentalisation of other’s thoughts is known as Theory Of Mind (TOM) or folk psychology
(Goldman, 2012). TOM represents a formalisation of mental states, including emotions
and internal attitudes such as beliefs, desires, hopes, and intentions. This extends to
automated systems (both virtual and physical); humans are known to
anthropomorphise non-human objects and attribute human-based mental models to
them (Lee et al., 2005). This is especially prominent when the system possesses some
human-like traits, for example as a robot or a virtual interface depicting a person (Parise
et al., 1999).

There is a strong suggestion that effective communication to facilitate good team
performance is dependent on the ability of individuals to utilise TOM. This correlation
has been demonstrated in human teams — a greater collective intelligence (a measure of
group performance) is linked to higher utilisation of TOM skills (Woolley et al., 2010).
Further work has shown this occurs both in face-to-face situations as well as in online
(i.e., text only) interactions (Engel et al., 2014).

Even with people’s innate ability to apply TOM models to non-human objects, there is
still a disparity in applying TOM to automated systems. Despite impressive increases in
the performance of ML systems on complex tasks, research has shown that humans and
automated systems perform the same tasks differently, for example, by looking at
different regions of an image during visual question answering (Das et al., 2017). These
discrepancies can lead to failed interactions due to ill-assigned TOM models
(Chandrasekaran et al., 2017). If the human users assume the systems are acting with
similar reasoning and beliefs as themselves (or humans in general), then they might
under or overestimate the ability to which the system can perform certain tasks, leading
to communication breakdowns and a reduction in performance. This is especially
prominent with the rise of large language models, although there is some evidence that
recent large language models demonstrate some initial levels of TOM (Kosinski, 2023).

The responsibility of effective communication that utilises TOM lies with all parties
involved. The communication between automated systems and humans should
facilitate better TOM models on behalf of humans, allowing human users to more
accurately understand their artificial teammates. Chandrasekaran et al. (2017) posit this
to mean that automated systems have to utilise TOM models of their human team
members in order to communicate most effectively (i.e., in a form of communication
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which the humans best understand) and allow the humans to build better TOM models
for the automated systems. Their work goes on to show that some off-the-shelf
interpretability techniques do not help improve a user’s TOM model of an ML system,
suggesting explainability techniques that communicate in human terms (i.e., concepts
and ideas that people are familiar with) and TOM based analogies may be more
effective. This agrees with our discussion above about the difference between
interpretability and explainability — the social process is necessary to transform
technical interpretations into human terms to provide complete explanations that
facilitate TOM models.

There are two possible ways to rectify the disparity between the perceived TOM of
automated systems and their true reasoning. The first is to make automated reasoning
more ‘human’, i.e., decision-making that utilises similar lines of reasoning to that of a
human. Whilst the human decision-making process is effective in tackling a wide
variety of problems at a high level of performance, distilling this into ML systems in a
way that achieves a high level of performance and is generalisable is a difficult task.
There is also the concern that imitating human decision-making may actually limit the
abilities of an automated system — by restricting it to the reasoning that we a familiar
with, what the system learns may be constrained such that new strategies or
relationships in the data are not discovered. The second solution is to ensure that the
system explains its actions in such a way that helps users build a sound and accurate
TOM model of the system, regardless of its internal implementation. Just as we do not
fully understand how the brain functions but can describe our intentions through TOM,
it may be sufficient for an automated system to just explain its intentions in a TOM
manner without actually utilising human-style reasoning. This emphasises the role of
explainability, not on the underlying learning process, making the goals of explainability
independent of the implementation of the automated system underneath. This leads to
potential long-term benefits as new ML techniques are developed in the future — one
only needs to adapt existing explainability methodologies to the underlying techniques
without having to completely redevelop the explainability and TOM model.

Both solutions to producing better explanations are dependent on some form of
reasoning that facilitates TOM models. For this, we can turn to causality, which we
discuss in the next section.

3.1.4 Causality

The real world is inherently based on cause-and-effect relationships; actions in an
environment have direct consequences on the environment itself. Even from an early
age, humans learn this relationship — knock a glass off a table, and it will fall to the
floor and likely smash into many pieces. A lot of human reasoning is based on
cause-and-effect interactions, and thus our explanations involve cause-and-effect
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relationships. One possible avenue for explaining the actions of an automated system
utilises causal relationships — this satisfies the use of TOM and provides effective
communication in human-machine teams.

The familiar statement “correlation does not imply causation” has weight when
considering how many modern ML systems make decisions. In a supervised learning
scenario, a system is typically just learning a correlation between elements of the input
data and the output label. In our running example, identifying the correlation between
certain groups of pixels and the label tiger is effective at achieving a high level of
performance. However, causality can also be explicitly applied in ML. Despite causal
relationships being a staple of the world in which we inhabit, there was much resistance
to the mere mention of causality in statistics throughout the 20th century. However,
modern research is much more open to the inclusion of causality, and advancements in
causal inference have begun to pervade the AI and ML world. Pearl and Mackenzie
(2018) define a ‘ladder of causation’ with three different stages, where each ‘rung’ on the
ladder utilises a higher level of causality than the previous stage. At the first level,
where Pearl considers modern AI systems to reside, the decision-making process only
utilises correlations and associations, i.e., what does x tell me about y? Associative
relationships give no guarantee of causality (i.e., does A cause B or vice versa) and there
could be unobserved causes responsible for both (Lipton, 2018). From an explainability
perspective, correlations offer an initial insight into a system’s decision-making, but
they fail to capture the true causal relationships and do not enable humans to create a
causal TOM mode.

Rung two of the ladder progresses to the inclusion of intervention — if I do x, what is
the effect on y? This goes beyond an associative relationship — the outcome y is
explicitly determined by the cause x, rather than being a correlation that may or may
not represent a casual relationship. Without a causal model, it is impossible to perform
any reasoning above rung one of the ladder, i.e., above the level of correlation and
association. The final rung of the ladder takes the use of interventions a step further and
considers counterfactual scenarios — if instead of doing x, I had done x’, what would
have happened to y? The distinction from rung two of the ladder is that x has already
happened, and the effect on y has been observed. The question now revolves around
what the effect on y would have been had x been different. This progresses to the
inclusion of imaginary worlds, and by utilising a causal model, it becomes possible to
unravel the degree to which x affected y (and how x’ would have affected y). A
depiction of this conceptualisation of causality is given in Figure 3.3.

A further distinction between counterfactual prediction and associative prediction (i.e.,
prediction that utilises causality rather than just correlation) is that counterfactual
reasoning can incorporate expert knowledge (Hernán et al., 2019). In current ML
systems, the use of domain expertise typically begins and ends with the curation of the
relevant data — once this has been done, the ML system is left to process the inputs and



28 Chapter 3. Literature Review

FIGURE 3.3: The ladder of causation; figure copied from (Pearl and Mackenzie, 2018).
Each rung adds a level of causal understanding, with many AI systems residing on the
bottom rung (i.e., purely associative relationships).

outputs and make its own decisions. In counterfactual reasoning, the domain expert has
a greater role in the learning process by providing the causal model and adjusting their
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relevant causal assumptions if the results of making inferences about the data do not
reflect the causal model. Whilst this line of reasoning can seem fairly abstract, it is
fundamental to how humans reason about situations. Providing answers to these sorts
of questions is currently beyond the capabilities of AI systems that operate at an
associative level, leading to a disparity between the way humans reason about the
world and the decision-making process of AI systems. Without addressing these
differences, automated systems are severely handicapped in their attempts to
communicate their reasoning with humans.

Fortunately, work on causal inference research has led to concrete mathematical models
for reasoning about cause-and-effect relationships. Beginning with the development of
causal diagrams (Pearl, 1995), and progressing to structural causal models, causal
inference provides a coherent, accessible way for defining causal relationships, and can
be utilised to perform causal reasoning based on observed, associative data (Halpern
and Pearl, 2005). The use of structural causal models allows for the progression from
rung one of the ladder (correlations and associative relationships) to rungs two and
three of the ladder by defining assumptions regarding causal relationships, providing a
solution for transforming system explanations into human-orientated, TOM based
reasoning.

As associations cannot identify the true underlying mechanisms that describe the
changes that can occur, a causal model is required in order to guarantee robustness
(Pearl, 2019). From an explainability perspective, causal explanations are more likely to
represent a realistic relationship rather than a spurious correlation. The sorts of queries
we want to be able to ask of AI systems, and the answers with which we expect them to
respond, go beyond associative reasoning, therefore requiring climbing to rung two or
rung three of the ladder of causality, meaning causal relationships must be utilised in
explainability. This is reinforced by the consideration of how humans reason and
explain using counterfactuals — this is well studied and can be applied to guide how
explainability should utilise counterfactual reasoning for explanations (Byrne, 2019).

The role of causation in explainability is an ongoing area of research (Baron, 2023;
Beckers, 2022). However, in order to generate casual explanations, is it necessary for
systems to utilise causal relationships in their decision-making process? An automated
system must either be based on a causal model, or its explanations must be mapped to
one (Holzinger et al., 2019). The use of causal models may increase system performance,
in which case the premise of explainability becomes easier as the explanations can be
directly derived from the system’s internal causal model.

With these considerations of TOM and causality, we now specifically focus on
interpreting the decision-making of ML systems.
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3.1.5 Interpretability Methods

Before we can discuss Multiple Instance Learning (MIL)-specific methods, it is necessary
to understand the broad elements of interpretability. Three aspects are discussed below.

3.1.5.1 Global vs Local

Interpretability can be split into global and local scopes (Molnar, 2020). Global
interpretability focuses on how the model makes predictions for any input, whereas
local interpretability focuses on one particular input.

In the global case, interpretations give an overview of general trends that hold across an
entire dataset. For example, in a medical setting, it could be that a particular patient
feature increases the risk of developing some disease across all patients. Such global
explanations give a general overview of how an automated system makes decisions,
and are useful in ensuring it acts correctly across all possible inputs.

For local outputs, the interpretations are specific to a particular input. Again using the
medical case, it could be that the value of a particular feature with respect to the other
features increases risk, despite this feature not having a global trend across all patients.
This facilitates understanding of decision-making for individual cases and highlights
casual relationships learnt by the model which may not be apparent from a global
perspective.

3.1.5.2 Inherent vs Post-hoc

In Section 3.1.2, we discussed the idea of model transparency (the concept that some
models are inherently interpretable). This means they provide some type of
interpretation (e.g., feature importance) alongside their output. This could be either
global (e.g., the weights in a linear regression model) or local (e.g., a saliency map over
an image). While certain models can provide these interpretations, not all models do so.
As discussed previously, inherent interpretability or transparency is typically associated
with simpler models.

To understand the decision-making of models that do not provide their interpretations
(i.e., are not transparent), post-hoc approaches can be used. These are separate methods
(distinct from the decision-making models) that query a model to understand how it
makes decisions. This could be a global interpretation, e.g., understanding the
representations learnt by convolutional or recurrent models (Du et al., 2019). It could
also be a local interpretation, e.g., perturbing the inputs of a specific input to see how a
model’s decision-making changes and thus revealing the extent to which elements of
the inputs affect the prediction. Ribeiro et al. (2016a) proposed Local Interpretable
Model-agnostic Explanations (LIME) and Lundberg and Lee (2017) proposed Shapley
Additive Explanations (SHAP) — both are examples of popular post-hoc local
interpretation methods.
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Running Example: Global vs Local Interpretations
Returning to the example edge case images previously shown, in Figure 3.4 we
present some mock local interpretations. If we were presented with interpretations
in the left example (background important), we could infer that the model has
not learnt the correct relationship — it is looking at the background colour (a
spurious correlation) rather than the animal itself. However, if we were presented
with interpretations similar to those on the right, we could infer that the model is
actually using the correct information (the animal) and is ignoring the background,
so we could be more confident and trusting in its decisions as it is using a causal
relationship. Furthermore, this would also suggest that the model will be robust
to other background types. In contrast to these local interpretations, an example
global interpretation would be: ”the model identifies huskies by the fact that they are
mostly observed in snowy climates (white backgrounds), and identifies tigers by the fact that
they are mostly observed in jungle climates (green/brown backgrounds)”.

FIGURE 3.4: interpretations allow us to understand model decision-making. In
these mock examples, unimportant areas are masked in grey while important areas
are unchanged. In the left examples, the animal itself is masked, implying the
model is only focusing on the background. In the right examples, the background is
masked, implying the model is (correctly) focusing on the animal in the foreground,
which is a true causal relationship. Tiger and husky images sourced from https:

//www.pexels.com/ under an open license.

3.1.5.3 Model-Specific vs Model-Agnostic

A final distinction that is important to discuss with respect to the research presented in
this thesis is the concept of model-specific vs model-agnostic approaches. Some
interpretability methods can only be applied to certain types of models, making them

https://www.pexels.com/
https://www.pexels.com/
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model-specific. An example of this is the Class Activation Mapping (CAM) family of
methods (originally proposed by Zhou et al., 2016), which examine the activation of
weights in neural networks for particular inputs (a post-hoc local method). As this
approach analyses the internal workings of neural networks, it is only applicable to that
family of models, i.e., it is not applicable to non-neural network approaches.

Alternative approaches, for example, LIME (Ribeiro et al., 2016a) and SHAP (Lundberg
and Lee, 2017) as mentioned above, are model-agnostic as they are not tied to one
particular family of models. These approaches typically make no assumptions about the
model that is being interpreted. Rather they only observe how its outputs change with
respect to different inputs. In this sense, the interpretation is only dependent on the
input data and the model’s outputs — the interpretability method does not care what
the underlying model is or how it is implemented.

Given this overview of interpretability, in the next section, we explore MIL in more
detail, including the core concepts of interpretability for MIL.

3.2 Multiple Instance Learning

Building on the background to supervised learning given in Chapter 2, we now provide
further details on MIL. Many of the concepts previously introduced are relevant in MIL;
the significant difference is in how the data is structured. We first cover this in
Section 3.2.1, and then explore the different learning paradigms within MIL in
Section 3.2.2. We next cover MIL assumptions in Section 3.2.3, which determine the
relationship between MIL instances and bags. Specific MIL models are next explored
(Section 3.2.4), and then we link the previous discussions of interpretability with respect
to MIL in Section 3.2.5. Finally, we discuss MIL as a whole and outline the research
chapters in the remainder of this thesis (Section 3.3).

3.2.1 Bags of Instances

For standard supervised learning, each piece of data x ∈ X is considered a complete
unit of independent information. In MIL, data is structured differently. Rather than
being organised as individual items, data is structured into groups, known in MIL
terms as a bag. Each piece of data within a bag is then termed an instance. Formally, a
bag is denoted X = {x1, x2, . . . , xk}, where each xi ∈ X is an instance and the bag size is
k (the number of instances). Following standard MIL notation, bag-level data is denoted
with uppercase variables and instance-level data is denoted with lowercase.

As MIL only requires labels at the bag level, it reduces the burden of labelling
(Carbonneau et al., 2018). This makes MIL an attractive solution in domains where
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manual annotation of instance-level data is expensive, for example when using textual
(Angelidis and Lapata, 2018; Bunescu and Mooney, 2007), medical (Hashimoto et al.,
2020; Javed et al., 2022; Li et al., 2021a; Li and Zhang, 2020; Marini et al., 2021; Quellec
et al., 2017; Sudharshan et al., 2019; Xu et al., 2014), or audio data (Kong et al., 2019;
Wang et al., 2019b). MIL has also been applied to problems such as image annotation
(Wu et al., 2015), object tracking (Babenko et al., 2011), video event detection (Phan et al.,
2015), and Time Series Classification (TSC) (Zhu et al., 2021).

In the most general sense, each instance can be considered a feature vector of some fixed
length d, and the space of possible instances can be defined as xi ∈ Rd. As such, a
general MIL bag can be represented as a matrix X ∈ Rk×d. While a 1D feature vector is
appropriate for some use cases, instances can also be represented in other ways,
typically dependent on the application domain or data modality:

• 1D feature vector: An instance can be an encoding or representation of a piece of
data, for example, a vector encoding of a word.

• Images: For computer vision applications, the instances represent images. These
could be patches of a larger image, different representations of the same object
(e.g., a car photographed from multiple angles), or stills taken from a video.

• A single scalar value: In some cases, an instance could simply represent a single
value. For example, a univariate time series could be considered a MIL bag, where
the value at each timestep is its own MIL instance.

For the most part, within a particular dataset, instances come from the same space (e.g.,
the same sized image patches or same length feature vectors) and are all of the same
modality (i.e., bags are not comprised of both image patches and feature vectors).
However, the size of bags k (the number of instances per bag), can vary across a dataset.
For example, sentences can be represented as MIL bags, where each word (or some
representation of it) is an instance. Sentences do not have a fixed length, and as such the
bags will have different sizes.

MIL is a weakly supervised learning paradigm. Under weak supervision, labelling occurs
at a higher level of abstraction or is of lower quality than fully supervised learning.
Specifically, MIL is an inexact supervision paradigm, where only coarse-grained label
information is provided, which alleviates expensive labelling costs. This is in contrast to
other forms of weak supervision, such as incomplete supervision, where only some of the
data is labelled (the remainder is completely unlabelled) and inaccurate supervision,
where the labels are not guaranteed to be correct. See Zhou (2017) for more details on
weakly supervised learning.

Recall from Section 2.1 that in standard supervised learning, each piece of data x ∈ X is
associated with a single label y ∈ Y . In MIL, only the bags are labelled. As such,
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models can only learn from the bag-level labels. Formally, each bag X has an associated
label Y ∈ YB, where YB is the space of bag-level labels.

While only bag-level labels are used during training, there is also the concept of
instance-level labels, where an instance xi ∈ X has an associated label yi ∈ YI . Here, YI

is the space of instance labels, which could be the same or different to the space of
bag-level labels YB. The vast majority of MIL datasets do not provide instance labels
(Carbonneau et al., 2018), and for those that do, the instance labels remain unused
during training. However, they form an important part of evaluating MIL
interpretability (which is discussed later in this chapter).

The objective of MIL is to learn some function F(X) that takes a bag X as input and
maps to a bag-level prediction Ŷ ∈ YB. This is sometimes facilitated through an
instance-level function f (xi) that operates on individual instances as opposed to the bag
as a whole. The output of f (xi) is an instance-level prediction ŷi ∈ YI . Again, we use
notational case to differentiate between bag-level (F) and instance-level functions ( f ).

3.2.2 Paradigms

There are three main paradigms into which methods for solving MIL problems can be
sorted:

1. Instance-space methods: A model learns the instance function f , allowing it to make
predictions for each of the instances in a bag. These predictions are then
aggregated to give an overall bag label. While the bag label could be used as a
proxy for the (unknown) instance labels, this introduces error and uncertainty into
the learning process as the bag label is not guaranteed to match the label of each
individual instance. Instead, a better approach is to train the model end to end,
using the predicted bag label generated through aggregation (Wang et al., 2018).

2. Bag-space methods: Rather than considering the individual instances within a bag,
bag space methods instead consider the whole bag as a non-vectorial entities (due
to the potential for different bag sizes). A bag can be represented as a set of points
in some space, so any distance function that can compares two sets of points in
this space can used. Using this distance function, classifiers such as k-nearest
neighbours or a kernel-based classifier such as a support vector machine can be
used to classify the bags (Amores, 2013).

3. Embedding-space methods: As bags can have different sizes, the distance functions
for bag space methods operate on non-vectorial entities. Embedding-space
methods take an alternative approach by creating a fixed-size feature vector that
represents a bag, which can then be classified to give a final bag label (Ilse et al.,
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2018; Wang et al., 2018; Zhou et al., 2009). Typically, each instance in a bag is
transformed into a low-dimensional embedding using an embedding function,
and the set of embeddings is then pooled to give an overall bag representation.

For both bag space and embedding-space methods, the instance prediction function f is
not learnt. Instead, the function F is learnt explicitly rather than inferring the bag label
from the instance predictions.

Instance-space methods and embedding-space methods are the two most popular and
high-performing paradigms (Carbonneau et al., 2018; Wang et al., 2018). A commonality
between the two methods is MIL pooling (sometimes called MIL aggregation). For
instance-space MIL, the pooling function takes instance predictions and produces a bag
prediction. In contrast, embedding-space pooling creates a single bag embedding by
aggregating the instance embeddings, and then classifies the bag embedding to give the
final bag label. This is what allows embedding-space methods to sometimes be more
effective than instance-space methods — the bag embedding captures global bag level
information that determines the bag label (Wang et al., 2018; Zhou et al., 2009). MIL
pooling is typically implemented as a mean or max function, i.e., the pooling method is
a fixed, non-learnable function.

3.2.3 Assumptions

The label of a bag, Y, is determined by the labels {y1, y2, . . . , yk} of the instances
contained in the bag. The particular mapping of instance labels to bag labels is known
as the MIL assumption, of which several have been proposed for different use cases.
The Standard MIL (SMIL) assumption, which is also the original definition of MIL
(Dietterich et al., 1997; Maron and Lozano-Pérez, 1997), is a binary problem with
positive (class 1) and negative (class 0) bags where the instance-label space is the same
as the bag-label space, i.e., YB ∈ Z2 and YI ∈ Z2. A bag is positive if any of its instances
are positive, otherwise, it is negative, i.e.,

Y =

1, if any yi = 1,

0, otherwise.
(3.1)

This assumption correctly captures the nature of some real-world problems. For
example, in histopathology, one might want to classify a tissue sample (the bag) as
cancerous or non-cancerous. If any region (an instance) in the sample is cancerous, then
the overall label for the sample is cancerous. Only if there are no cancerous regions is
the sample labelled as non-cancerous.
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However, many problems do not conform to the SMIL assumption. Under SMIL, there
is only a single concept to be learnt that distinguishes positive instances from negative
instances. It is possible to think of scenarios where classes can only be separated by
examining multiple concepts. Foulds and Frank (2010) give the example of classifying
images of oceans, beaches, and deserts. If using a one-versus-all classifier for beaches, then
there is no single concept that is unique to beaches (water appears in ocean and sand
appears in desert). Instead, beach is defined by the co-occurrence of water and sand. This
has led to a generalisation of SMIL to fit different assumptions. For example, Weidmann
et al. (2003) define a hierarchy of assumptions that define the relationship between
instance labels and bag labels.

The purpose of defining additional assumptions is to allow learning algorithms to
exploit the relationship between instance labels and bag labels, i.e., they can exploit the
prior knowledge of the problem domain (Foulds and Frank, 2010). For example, under
the SMIL assumption, any single positive instance is sufficient to give a positive bag
label, therefore max pooling with an instance-space classifier is able to give correct
classifications. Conversely, if using a count-based assumption (Weidmann et al., 2003),
two or more positive instances are required, therefore max pooling is no longer
appropriate.

SMIL also assumes there is no interaction between the instances, which is not
necessarily true for all MIL problems. In fact, learning the relationships between
instances is what makes MIL more powerful than standard supervised learning, and
indeed, previous work has shown modelling the relationships between instances is
beneficial for performance in bag-level prediction (Tu et al., 2019; Zhou et al., 2009). As
an example, consider classifying an image (the bag) by splitting it into patches (the
instances). Patches that occur next to each other are more likely to come from the same
class than patches that are far apart, therefore incorporating the spatial relationships
between instances can be used to improve performance. For example, with patches
extracted from satellite images, patches containing houses would be expected to be near
patches containing roads.

For certain types of MIL models, understanding the MIL assumption is essential for
setting up the model in the correct way. However, as we explore in the next section,
neural networks can be used as general-purpose approaches that can be applied to any
MIL assumption. In the research presented in this thesis, we use neural networks for
general MIL classification and regression problems. Nevertheless, understanding the
mapping from instance to bag labels remains important, particularly when it comes to
interpretability.
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Running Example: Tigers and Huskies as MIL

An example of a MIL problem based around tigers and huskies could appear as
follows. Each bag is a collection of images of random animals. For an SMIL problem,
we could consider tigers to be the positive class, and all other animals (including
huskies) to be the negative class. Therefore, any bag containing an image of a tiger
is positive, and all other bags (containing no tigers) are negative. In more a complex
case, we could define the assumption that positive bags must contain an image of a
tiger and an image of a husky. In such a case, a bag containing only an image of a
tiger or an image of a husky is not positive, so the model needs to learn that both
have to co-occur for a positive prediction.

3.2.4 Multiple Instance Learning Methods

Many MIL methods have been developed for different domains and MIL assumptions.
This section is not intended to give an exhaustive list of all techniques, but rather
highlight some of the more recent methods and give an insight into the
State-Of-The-Art (SOTA). For a review of older MIL techniques, please see Amores
(2013). In the remainder of this section, we review MIL neural networks, graph-based
methods, and attention methods, as these are the current SOTA methods.

3.2.4.1 Multiple instance neural networks

In conventional supervised learning, deep neural networks are a widely used and
successful method (see Section 2.3). They can be adapted for use in MIL as general
learners for any MIL assumption. Two early implementations by Chen and Narendra
(2001) and Zhou and Zhang (2002) both utilised the SMIL assumption and operated in
the instance-space. A more recent study by Wang et al. (2018) proposed MIL neural
networks that are able to exploit modern advances in Deep Learning (DL) such as
residual connections (He et al., 2016) and deep supervision (Lee et al., 2015). Two
different architectures were proposed: mi-Net and MI-Net. mi-Net operates in the
instance space as it makes a prediction for every instance and then aggregates those
predictions to an overall bag-level prediction. MI-Net operates in the embedding space:
it aggregates instance representation into a single bag representation (typically with
mean or max pooling) and then classifies the bag representation. As such, it does not
make instance predictions. To aid clarity, in the remainder of this work, we refer to
mi-Net and MI-Net as Instance and Embedding respectively.

Wang et al. (2018) found Embedding outperformed Instance, highlighting that learning
global bag-level information is beneficial for performance (as opposed to just learning
to make instance predictions). Although the initial experiments of Wang et al. (2018)
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used the SMIL assumption, later works (as well as the research given later in this thesis)
showed that neural networks can easily be generalised to multi-class problems (Ilse
et al., 2018). Note, in this neural network setup, Instance does not use the bag label as
a proxy for the instance labels. Instead, the entire network is trained end-to-end, which
is possible as the network’s final out is a bag-level prediction. The instance-level
predictions can be seen as a byproduct of the network architecture, but, as we discuss in
Section 3.2.5, they are a form of inherent interpretability.

3.2.4.2 Graph-based methods

Considering the relations between instances is important for some types of MIL
problems. Zhou et al. (2009) proposed a bag space method that explicitly captures the
relationships between instances. They represented bags as graphs and designed a graph
kernel to capture the similarity among graphs, and then used a support vector machine
to classify the bags. Using the graph-based representation meant better information
about the bag as a whole was captured — information that is not apparent when only
looking at the instances without the context of the bag. This work was further
developed by Tu et al. (2019) to use Graph Neural Network (GNN) pooling. Instead of
using a graph kernel to capture the similarity among graphs, they use an end-to-end
graph representation learning algorithm to create fixed-size embeddings for bags,
making this an embedded-space method as opposed to a bag-space method. We refer to
MIL GNN pooling as Graph in the remainder of this work.

3.2.4.3 Attention methods

Typical MIL pooling methods, whether in an instance-based or embedding-based
context, treat all instances equally, i.e., they assume all of the instances contribute
equally to the overall bag label. However, in reality, some instances will be more
important than others, e.g., background regions in images are likely to be less important
than foreground regions. Ilse et al. (2018) proposed a novel MIL neural network (see
Section 3.2.4.1) approach that utilises attention-based pooling to weight the importance
of instances. The attention mechanism used is a learnable function (as opposed to mean
and max aggregation that are fixed), which is beneficial in adapting to the given task
and data. This attention pooling was shown to give superior performance to
conventional pooling methods. We refer to it as Attention in the remainder of this
work.

One downside of Attention is that it does not provide complete instance predictions.
Instead, it provides a measure of importance for each instance (the attention scores) —
these are not class-specific. One solution that overcomes this issue is additive pooling
(Javed et al., 2022). This pooling approach adapts attention pooling such that it makes
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instance predictions while also utilising attention. As such, it can be considered more
interpretable than attention pooling as instance predictions are class-specific. We refer
to additive pooling as Additive in the remainder of this work.

In this thesis, we focus on developing and utilising interpretable MIL neural networks.
In Figure 3.5 we provide a visual summary of the existing MIL pooling methods that
re-occur throughout this work (borrowing from a figure presented in Chapter 7). In the
next section, we discuss MIL interpretability in detail.

FIGURE 3.5: An overview of five different MIL pooling methods used. Embedding,
Attention, Instance, and Additive are existing methods that are introduced above,
and Conjunctive is a novel method proposed in Chapter 7. Foregoing specific detail
for now, each pooling approach takes the same input (a collection of embedded vec-
tors) and produces a bag-level prediction. However, they have different approaches
for aggregating the information contained in the embeddings, and produce different
interpretability outputs.

3.2.5 Interpretability for Multiple Instance Learning

In MIL, there are often only a few key instances within a bag that determine the bag
label. For example, in SMIL, the bag label is only determined by the positive instances
within a bag, which could be only a single instance in a bag containing over a hundred
instances. To interpret the decision-making process of an MIL system, it is necessary to
identify these key instances (Liu et al., 2012). The key instances have a causal influence
on the bag label — there may be spurious associative links between the other instances
and the bag label, but these will not be true causal relationships. This also means the
resulting interpretations provided move up from rung one to rung two of the causal
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ladder. Furthermore, in the case of key instance detection, the global scope would
identify the concepts that differentiate key instances from other instances, and the local
scope would identify the key instances for a particular input bag.

Interpreting the decision-making of MIL systems is complicated by noise in the data. As
only some of the instances in a bag will be discriminatory key instances, a significant
number of the instances in a bag will be non-discriminatory or even related to other bag
classes (Amores, 2013). Not only does this confusing information make the learning
problem more difficult, but it also complicates the interpretation of the model, as there
could be a large amount of non-discriminatory data that is not relevant to the model’s
decision-making process. An important part of communicating appropriate
interpretations of a model’s decision-making process is not overloading the explainee
with too much information (Li et al., 2016). Identifying the key instances and presenting
those as the interpretation of model decision-making filters out the non-discriminatory
information and provides the explainee with a reduced and relevant interpretation.
Along with an appropriate social process (i.e., the context and meaning of the key
instances), this interpretation facilitates human understanding as the causal relationship
becomes apparent: these are the instances that determine the bag label, and the other
instances are irrelevant.

In Chapter 4, we identify two questions that interpretability methods for MIL should be
able to answer: 1) Which are the key instances for a bag? 2) What outcome (class/value)
does each key instance support? We refer to these two questions as the which and the
what questions respectively. As we explore below, existing interpretability methods can
answer question one, but can only answer question two under the SMIL assumption.
From a causal perspective, which questions are equivalent to identifying that causal
relationships exist between the key instances and the bag label, and what questions are
about understanding the nature of said relationships.

Under the SMIL assumption, which and what questions are equivalent — there are only
two classes (positive and negative), and the only key instances are the positive
instances, therefore once the key instances are identified, it is also known what outcome
they support. However, in MIL problems beyond the SMIL assumption, answering
which and what questions becomes two distinct problems. For example, if there is more
than one positive class, some key instances will support one positive class, and some
key instances will support another. Therefore, solely identifying the key instances does
not answer the second question of which class they support. Below we outline previous
methods that provide some level of interpretability for MIL systems and consider how
well they are able to answer these which and what questions.
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3.2.5.1 Inherent interpretability

Models that produce instance-level predictions, such as Instance (Wang et al., 2018)
and Additive (Javed et al., 2022), are local inherently interpretable methods.
Instance-level predictions can answer both the which and what questions. However, as
the prediction is often made independently for each instance, they do not take account
of interactions between the instances, so sometimes provide inaccurate predictions.
Additional drawbacks of inherently interpretable methods are a lack of flexibility in
model choice and a potential sacrifice in predictive power.

3.2.5.2 Key instance detection

Liu et al. (2012) proposed a model-specific method for identifying key instances directly,
rather than as a by-product of learning bag labels. They developed a voting framework
that utilises a network-based representation of the data to learn to identify key
instances. This was done under the SMIL context, where the only key instances are
positive instances, so this method only satisfies the two questions but only under the
SMIL assumption.

3.2.5.3 Attention

In the context of MIL, attention can be used to learn to attend to important instances
within bags (Ilse et al., 2018). The model does not produce instance-level predictions,
but the attention values are a measure of how important each instance is for a particular
input (a form of local interpretation). These values can be used to identify the key
instances, but cannot say which class they support, i.e., attention can only answer which
questions, not what questions. An additional drawback is that the method is
model-specific as it can only be used for neural networks, and those networks must use
Attention.

3.2.5.4 GNNs

GNNs can be used in MIL to capture the structural relationships between instances in
bags. By collapsing the learnt graph representation into clusters, the key instances can
be identified by how likely they are to belong to a given cluster. Tu et al. (2019) give
examples of key instance identification using Graph under the SMIL assumption, but it
has not been demonstrated for more general cases. It is also a model-specific method, as
it relies on the assignment matrices produced as part of the GNN learning process.
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In general, existing methods are mostly local approaches focused on the SMIL
assumption, and either cannot generalise to other MIL problems or can only answer
which questions in more general cases. To answer what questions, interpretations need
to be produced with respect to a particular class. We summarise the inherent
interpretability of MIL neural network approaches in Table 3.1.

TABLE 3.1: A summary of the inherent interpretability of MIL neural network ap-
proaches. which and what indicate the interpretability questions the models are inher-
ently able to answer for general MIL problems.

Method Inherent Interpretability

Embedding (Wang et al., 2018) None.
Instance (Wang et al., 2018) Instance predictions (which and what).
Attention (Ilse et al., 2018) Instance attention scores (which).
Additive (Javed et al., 2022) Instance predictions and attention (which and what).
Graph (Tu et al., 2019) Graph representation clustering (which).

3.3 Discussion

The more recent methods proposed for MIL problems follow a similar theme: they all
take older MIL ideas from before the emergence of DL and update them to utilise new
methods from supervised learning. Many of the problems that are being solved are the
same, but there is now an arsenal of new methods that can be used to tackle them.
Identifying the relationships between instances is a prime example of this — the graph
kernel method of Zhou et al. (2009) and the GNN method of Tu et al. (2019) are both
tackling the same issue with similar approaches, yet the latter method benefits from an
additional decade of knowledge on graph representation learning.

The inclusion of DL techniques is also beneficial in scaling up the algorithms to more
complex datasets. Techniques such as convolutional layers can be easily integrated into
existing MIL algorithms by upgrading the Feature Extractor (FE) or classifiers, whilst
still using the same pooling techniques as previous methods. This allows MIL to be
applied to much larger datasets such as gigapixel whole slide images in histopathology
research (Hashimoto et al., 2020; Javed et al., 2022; Li et al., 2021a; Li and Zhang, 2020;
Marini et al., 2021).

It is also important to consider how well these methods generalise to any MIL problem.
Previous techniques often focused solely on the SMIL problem, and while a multi-class
problem can be transformed into a binary problem using one-versus-all classifiers, this
does not scale well when the training time of models and the number of classes
increases (as is seen with modern ML models and datasets). The flexibility provided by
modern approaches means the methods no longer need to be designed to exploit the
existing assumptions about the problem, rather they can be used out of the box and
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adapt to any MIL problem. This highlights a trend where the development of MIL
methods no longer focuses so heavily on SMIL or other such assumptions. This also
makes MIL applicable to other problems where these assumptions do not hold, and
maybe even as an alternative approach for some standard supervised learning problems.
We give our own example of this in Chapter 5, where MIL is used for semantic
segmentation of high-resolution Earth Observation (EO) imagery — an approach that
typically requires segmentation labels that are expensive and time-consuming to obtain.

MIL is an active area of research. Beyond the applications mentioned above, additional
topics are being explored. One such topic is multi-MIL, where the instances within a
bag are arranged into further bags, giving a hierarchical bags-of-bags structure (Fuster
et al., 2022; Tibo et al., 2017, 2020). Another topic is multi-modal MIL, where two or
more modalities are used within bags (Li et al., 2021b,c; Wang et al., 2023). For example,
this could be using tabular data alongside image data.

In the next chapter, we discuss the first piece of novel research, which is focused on
developing a MIL post-hoc model-agnostic interpretability method that can answer
both which and what questions for general MIL classification problems with multiple
classes. In Chapter 5, this is extended to a MIL regression problem specifically focused
on interpretability for high-resolution images in EO applications.

Chapters 4 and 5 are mostly focused on computer vision applications of MIL. Therefore
in Chapters 6 and 7, we explore the development of interpretable MIL methods for
sequential data, investigating Reward Modelling (RM) and TSC. Investigating
interpretable MIL in different application domains and ML paradigms naturally leads
to the development of different models and techniques. However, there are common
themes that occur across these different areas. Underpinning each of them is the core of
MIL interpretability, which we explore next.
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Part II

Interpretable Multiple Instance
Learning for Vision
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Chapter 4

Model Agnostic Interpretability for
Multiple Instance Learning

This chapter contains work completed for a paper published at the International
Conference of Learning Representations (ICLR) 2022, which was a virtual conference
due to the COVID-19 pandemic. The content presented is mostly unchanged from its
original format: elements of the original appendix have been brought into the main
body, certain sections have been slightly reworded, and some terminology/notation has
been modified for consistency with the rest of this thesis.

Paper

Joseph Early, Christine Evers, and Sarvapali Ramchurn. Model agnostic interpretability
for multiple instance learning. In International Conference on Learning Representations,
2022c. URL https://openreview.net/forum?id=KSSfF5lMIAg

GitHub: https://github.com/JAEarly/MILLI

https://openreview.net/forum?id=KSSfF5lMIAg
https://github.com/JAEarly/MILLI
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4.1 Introduction

In Multiple Instance Learning (MIL), data is organised into bags of instances, and each
bag is given a single label. This reduces the burden of labelling, as each instance does
not have to be assigned a label, making it useful in applications where labelling is
expensive, such as healthcare (Carbonneau et al., 2018). However, there are often only a
few key instances within a bag that determine the bag label, so it is necessary to identify
these key instances in order to interpret a model’s decision-making (Liu et al., 2012).
Directly interpreting the decision-making process of Machine Learning (ML) methods is
difficult due to the complexity of the models and the scale of the data on which they
trained, so there is a need for methods that allow insights into the decision-making
processes (Gilpin et al., 2018). In MIL problems, only some of the instances in each bag
will be discriminatory with respect to a particular class, i.e., a significant number of the
instances in a bag will background (non-key) instances or key instances that are
discriminatory for other bag classes (Amores, 2013). Identifying the important instances
and presenting those as the interpretation of model decision-making filters out the
non-discriminatory information and provides the explainee with a reduced and
relevant interpretation, which will avoid overloading the user (Li et al., 2016). This
work provides the following novel contributions:

1. MIL interpretability definition We identify two questions that interpretability
methods for MIL should be able to answer: 1) Which are the key instances for a
bag? 2) What outcome (class/value) does each key instance support? In the rest of
this work, we will refer to these two questions as the which and the what questions
respectively. As we explore in Section 4.2, existing interpretability methods are
able to answer which questions with varying degrees of accuracy, but can only
answer what questions under certain assumptions.

2. MIL model-agnostic interpretability methods Existing interpretability methods
are often model-specific, i.e., they can only be applied to certain types of MIL
models. To this end, we build upon the State-Of-The-Art (SOTA) MIL inherent
interpretability methods by developing model-agnostic interpretability methods
that produce interpretations that are up to 30% more accurate than approaches
such as LIME (Ribeiro et al., 2016b) and SHAP (Lundberg and Lee, 2017). The
model-agnostic interpretability methods that we propose can be applied to any
MIL model, and are able to answer both which and what questions.

3. MIL interpretability method comparison We compare existing model-specific
methods with our model-agnostic methods on several MIL datasets. Our
experiments are also carried out on four types of MIL models, giving a
comprehensive comparison of interpretability performance. To the best of the
authors’ knowledge, this is one of the first studies to compare different
interpretability methods for MIL.
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The remainder of this work is laid out as follows. Section 4.2 provides relevant
background knowledge and reviews existing MIL interpretability methods. Section 4.3
outlines the requirements for MIL interpretability and details our approaches that meet
these requirements. Next Section 4.4 provides our experimental setup, and Section 4.5
provides results. Section 4.6 discusses our findings, and Section 4.7 concludes.

4.2 Background and Related Work

The Standard MIL (SMIL) assumption is a binary problem with positive and negative
bags (Dietterich et al., 1997; Maron and Lozano-Pérez, 1997). A bag is positive if any of
its instances are positive, otherwise, it is negative. The assumptions of SMIL can be
relaxed to allow more generalised versions of MIL, e.g., through extensions that include
additional positive classes (Scott et al., 2005; Weidmann et al., 2003). SMIL also assumes
there is no interaction between instances. However, recent work has highlighted that
modelling relationships between instances is beneficial for performance (Tu et al., 2019;
Zhou et al., 2009). Existing methods for interpreting MIL models often rely on the SMIL
assumption, so cannot generalise to other MIL problems. In addition, existing methods
are often model-specific, i.e., they only work for certain types of MIL models, which
constrains the choice of model (Ribeiro et al., 2016b). Identifying the key instances in
MIL bags is a form of local interpretability (Molnar, 2020), as the key instances are
detected for a particular input to the model. Two of the key motivators for interpreting
the decision-making process of a MIL system are reliability and trust — identifying the
key instances allows an evaluation of the reliability of the system, which increases trust
as the decision-making process becomes more transparent. In this work, we use the
term interpretability rather than explainability to convey that the analysis remains tied
to the models, i.e., these methods do not provide non-technical explanations in human
terms.

Under the SMIL assumption, which and what questions are equivalent — there are only
two classes (positive and negative), and the only key instances are the positive instances,
therefore once the key instances are identified, it is also known what outcome they
support. However, when there are multiple positive classes, if instances from different
classes co-occur in the same bags, answering which and what questions becomes two
distinct problems. For example, some key instances will support one positive class, and
some key instances will support another. Therefore, solely identifying which are the key
instances does not answer the second question of what class they support. Existing
methods, such as key instance detection (Liu et al., 2012), MIL attention (Attention;
Ilse et al., 2018), and MIL Graph Neural Network (GNN) (Graph; Tu et al., 2019) do not
condition their output on a particular class, so it is not apparent what class each
instance supports, i.e., they can only answer which questions. One existing method that
can answer what questions is mi-Net (Instance; Wang et al., 2018), as it produces
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instance-level predictions as part of its processing. However, these instance-level
predictions do not take account of interactions between the instances, so are often
inaccurate. In this work, we aim to overcome the limitations of existing methods by
developing model-agnostic methods that can answer both which and what questions.

In single-instance supervised learning, model-agnostic techniques have been developed
to interpret models. Post-hoc local interpretability methods, such as Local Interpretable
Model-agnostic Explanations (LIME) proposed by Ribeiro et al. (2016a) and Shapley
Additive Explanations (SHAP) proposed by Lundberg and Lee (2017), work by
approximating the original predictive model with a locally faithful surrogate model that
is inherently interpretable. The surrogate model learns from simplified inputs that
represent perturbations of the original input that is being analysed. In this work, one of
the proposed methods is a post-hoc local approach similar to LIME and SHAP but
specifically designed for MIL.

4.3 Methodology

At the start of this section, we outline the requirements for MIL interpretability
(Section 4.3.1). In Section 4.3.2, we propose three methods that meet these requirements
under the assumption that there are no interactions between instances
(independent-instance methods). In Section 4.3.3 we remove this assumption and
propose our local surrogate model-agnostic interpretability method for MIL.

4.3.1 Multiple Instance Learning Interpretability Requirements

A general MIL classification problem has C possible classes, with one class being
negative and the rest being positive. This is a generalisation of the SMIL assumption,
which is a special case when C = 2. An interpretability method that can only provide
the general importance of an instance (without associating it with a particular class) can
only answer which questions. In order to answer what questions, the method needs to
state which classes each instance supports and refutes. Formally, for a bag of instances
X = {x1, . . . , xk} and a bag classification function F, we want to assign a value to each
instance that represents whether it supports or refutes a class c ∈ {0, . . . , C − 1}:

I(X, F, c) = {ϕ1, . . . , ϕk}

where I is the interpretability function and ϕi ∈ R is the interpretability value for
instance i with respect to class c. Here, we assume that ϕi > 0 means instance i supports
class c, ϕi < 0 implies instance i refutes class c, and the greater |ϕi|, the greater the
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importance of instance i. For some existing methods, such as attention, ϕi is the same
for all classes and ϕi ≥ 0 in all cases, meaning these requirements are not met and
performance is reduced (see Section 4.6). In the next two sections, we propose several
model-agnostic methods that satisfy these requirements.

4.3.2 Determining Instance Attributions

In this section, we propose three model-agnostic methods for interpreting MIL models
under the assumption that the instances are independent. This means we can observe
the effects of each instance in isolation without worrying about interactions between the
instances. We exploit a property of MIL models: the ability to deal with different-sized
bags. As MIL models can process bags of different sizes, it is possible to remove
instances from the bags and observe any changes in prediction, allowing us to
understand what instances are responsible for the model’s prediction. Below, we
propose three methods that use this property to interpret a model’s decision-making.

Single Given a bag of instances X = {x1, . . . , xk} and a bag classification function F,
we can take each instance in turn and form a single instance bag {xi} for i ∈ {1, . . . , k}.
We then observe the model’s prediction on each single instance bag ϕi = Fc({xi}),
where Fc is the softmax-normalised output of F for class c, i.e., the cth entry in the
softmax output vector of F({xi}). A large value for ϕi suggests instance xi supports c,
and a value close to zero suggests it has no effect with respect to class c (note this is
using softmax-normalised model outputs). If we repeat this over all instances and all
classes, we can build a picture of the classes that each instance supports, allowing us to
answer what questions. However, this method cannot refute classes (i.e., ϕi ≥ 0 in all
cases). It should be noted that this method gives the same outputs as the inherent
interpretability of Instance (Wang et al., 2018), but here it is a model-agnostic rather
than a model-specific method.

One Removed A natural counterpart to the Single method is the One Removed
method, where each instance is removed from the complete bag in turn, i.e., we form
bags X \ {xi}. For a particular class c, we can then observe the change in the model’s
prediction caused by removing xi from the bag: ϕi = Fc(X)− Fc(X \ {xi}). If the
prediction decreases, xi supports c, and if it increases, xi refutes c, i.e., this method can
both support and refute different classes. However, if there are other instances in the
bag that support or refute class c, we may not observe a change in prediction when xi is
removed, even if xi is a key instance.
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Combined To access the benefits of both the Single and One Removed methods, we
can combine their outputs. A simple approach is to take the mean, i.e.,
ϕi =

1
2 [Fc({xi}) + Fc(X)− Fc(X \ {xi})]. This method can identify the important

instances revealed by the Single method, and also refute outcomes as revealed by the
One Removed method.

With these three methods, it is assumed that there are no interactions between the
instances. This is not true for all datasets, therefore, in the next section, we remove this
assumption and propose a further method that can deal with the interactions between
instances.

4.3.3 Dealing with Instance Interactions

To calculate instance attributions whilst accounting for interactions between instances,
we have to consider the effect of each instance within the context of the bag. With
instance interactions, the co-occurrence of two (or more) instances changes the bag label
from what it would be if the two instances were observed independently. The instances
have different meanings depending on the context of the bag, i.e., on their own they
mean something different to what they mean when observed together. One way to
uncover these instance interactions is to perturb the original input to the model and
observe the outcome. In the case of MIL, these perturbations can take the form of
removing instances from the original bag. By sampling coalitions of instances, and
fitting a weighted linear regression model against the coalitions and their respective
model predictions, it is possible to construct a surrogate locally faithful interpretable
model that accounts for the instance interactions in the original bag.

Below, we propose MILLI: Multiple Instance Learning Local Interpretations. At the core
of our approach is a new method for sampling and weighting coalitions based on an
initial ranking of instance importances r = {r1, . . . , rk}, i.e., focusing on the content of
coalitions (initial instance importances) and their size, not solely by their size as in the
comparable approaches of SHAP and LIME. We summarise this approach in
Algorithm 1, and then provide further details for each step of the algorithm.

Algorithm 1 MILLI

Require: Bag of instances xi ∈ X, class c, number of samples n.
1. Calculate initial instance importance scores for class c: r = {r1, . . . , rk}.
2. Sample n coalitions V:
while |V| < n do

Sample coalition v with P(vi = 1) = pi and P(vi = 0) = 1 − pi, where pi = πR(ri).
Append v to V.

end while
3. Fit a surrogate local model Gc(v) = ϕ0 + ∑k

i=1 ϕivi using the sampled set of
coalitions V. The learnt weights ϕi ∈ {ϕ1, . . . , ϕk} of Gc are the interpretability scores
for X with respect to class c.
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4.3.3.1 MILLI: Initial ranking

The determine an initial ranking of instance importance, we use the Single method from
Section 4.3.2, which produces initial importance values {ϕ′

1, . . . , ϕ′
k}. This is converted

to an instance ranking: the new values {r1, . . . , rk} represent the position of instance i in
{ϕ′

1, . . . , ϕ′
k} ordered from largest to smallest (e.g., the instance with the greatest value

for ϕ′
i has ri = 0).

4.3.3.2 MILLI: Coalition sampling

A coalition is a binary vector v ∈ {0, 1}k that represents a sub-bag SX = {xi|vi = 1}, so
the number of ones in the coalition, |v|, is equal to the length of SX. To fit a local
surrogate model, we first need to sample a collection of n coalitions V (effectively a
matrix of shape Rn×k). We can consider the problem of sampling as a repeated coin toss,
where P(vi = 1) = pi and P(vi = 0) = 1 − pi. In equal random sampling, every value
pi ∈ {p1, . . . , pk} is equal to 0.5, meaning E[|v|] = 0.5k. However, it is possible to
improve upon equal random sampling by changing the value of p for each instance in
the bag, i.e., we can change the likelihood of each instance being involved in a coalition.
To sample more informative coalitions, we set pi = πR(ri):

πR(ri) =

(2α − 1)(1 − ri
k )e

−β̂ri + 1 − α, if β̂ ≥ 0,

(1 − 2α)(1 + ri−k
k )e|β̂|(ri−k) + α, otherwise,

and β̂ =

β, if α < 0.5,

−β, otherwise.
(4.1)

The resulting expected coalition size E[|v|] =
∫ k

1 πR dr:

E[|v|] =


2α−1
kβ̂2 (e−β̂k + β̂k − 1) + k(1 − α), if β̂ ≥ 0,

1−2α
kβ̂2 (e−β̂k + β̂k − 1) + kα, otherwise.

(4.2)

πR is a function that weights instances based on their order in the ranking. Its two
hyperparameters, α ∈ [0, 1] and β ∈ (−∞, ∞) define the shape of the function. The
value of α dictates whether the sampling should be biased towards instances that are
highly ranked or not: α > 0.5 means πR is biased towards instances higher in the
ordering, and α < 0.5 means πR is biased towards values lower in the ordering. If β < 0,
the sampling is biased towards smaller coalitions, and if β > 0, the sampling is biased



54 Chapter 4. Model Agnostic Interpretability for Multiple Instance Learning

towards larger coalitions. The maximum and minimum E[|v|] is controlled by α. When
α = 0.5 or β = 0, every value pi ∈ {p1, . . . , pk} is equal to 0.5, meaning we have equal
random sampling as described above. We provide an illustration of πR in Figure 4.1,
and an overview of how E[|v|] changes in Figure 4.2.

FIGURE 4.1: The effect of α and β on πR (Equation 4.1).

FIGURE 4.2: The effect of α and β on E[|v|] (Equation 4.2). We give the expected
coalition size as a proportion of the bag size, i.e., E[|v|]/k.

4.3.3.3 MILLI: Surrogate model

The surrogate model Gc is a linear model of the form

Gc(v) = ϕ0 +
k

∑
i=1

ϕivi, (4.3)

where each coefficient ϕi ∈ {ϕ1, . . . , ϕk} is a weight in the model. We use ϕi for the
weights as these are the resulting importance attributions (interpretability) scores for
each instance xi ∈ X with respect to class c, i.e., the weights of this linear model tell us
how much each instance supports/refutes class c. Given the collection of n coalitions V,
minimising the loss function

L(F, Gc, π) = ∑
v∈V

[Fc(SX)− Gc(v)]2π(v), (4.4)
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means Gc is a locally faithful approximation of the original model F for class c.

The loss function is weighted by a kernel π, which determines how important it is for
Gc to be faithful for each individual coalition. Here, Gc only approximates F for class c,
i.e., to produce interpretations for a bag with respect to all classes, a surrogate model
needs to be fit for each class. Similar approaches have been applied in single-instance
supervised learning in methods such as LIME and KernelSHAP. Both use different
choices for π: LIME employs l2 or cosine distance, and KernelSHAP uses a weighting
scheme that approximates Shapley values (Shapley, 1953). For single instance
supervised learning models, when perturbing the inputs, it is not possible to simply
‘remove’ a feature from an input as the models expect fixed-size inputs — either a new
model has to be re-trained without that particular feature, or appropriate sampling from
other data has to be undertaken, which can lead to unrealistic synthetic data. In MIL, as
models are able to deal with variable-sized bags, instances can be removed from the
bags without the need for re-training or sampling from other data, meaning these issues
do not occur in our setting.

While it is possible to utilise the weight kernels from LIME and KernelSHAP for MIL,
we identify a significant drawback with both methods. Their choice for π weights all
coalitions of the same size equally, i.e., they do not consider the content of the coalitions,
only their size. Just because two coalitions are of the same size does not mean it is
equally important that the surrogate model is faithful to both of them. Furthermore, the
sampling strategies of both approaches lead to very large (|v| close to k) or very small
coalitions (|v| close to 0). Unless the number of samples n is very large, samples of
average size (|v| close to k/2) will not be chosen. As we see in Section 4.5, the LIME and
KernelSHAP sampling approaches are appropriate for some datasets, but not for others.
For a coalition v and ranking of instance importances r, we define our weight kernel πM

as:

πM(v, r) =
1
|v|

k

∑
i=1

vi πR(ri). (4.5)

Note πR is the same weighting function as used in the coalition sampling approach
detailed above. In πM, the coalition v is weighted on its content rather than its length,
i.e., the distance between a subset and a bag is no longer determined simply by the
number of instances removed. This is beneficial, as removing many non-discriminatory
instances from the bag likely means the label of the bag remains the same, despite being
different in size. Conversely, removing one discriminatory instance could change the
bag label, even though the bag is only one instance smaller.

MILLI is more expensive to compute that the methods outlined in Section 4.3.2:
O(Cnk2) compared with O(Ck). However, when there are interactions between the
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instances, this extra complexity is required in order to build a better understanding of
the classes that each instance supports and refutes, allowing more accurate answering
of what questions. It is important to note that MILLI is indeed model agnostic — it only
requires access to the bag classification function F, and makes no assumptions about the
underlying MIL model. As we demonstrate in the next section, this means we can apply
it to any MIL model.

4.4 Experimental Setup

We apply our model-agnostic methods to seven MIL datasets. In this section, we detail
the evaluation strategy (Section 4.4.1), datasets (Section 4.4.2), models (Section 4.4.3),
interpretability hyperparameters (Section 4.4.4), and training process (Section 4.4.5). For
implementation details, see Appendix A.1.

4.4.1 Evaluation Strategy

For our evaluation, we do not assume that the interpretability methods have consistent
output domains; we only assume a larger value implies larger support. Therefore, the
best approach for evaluating the interpretability methods is to use ranking metrics —
rather than looking at the absolute values produced by the methods, we compare the
relative orderings they produce. As noted by Carbonneau et al. (2018), although a large
number of benchmark MIL datasets exist, many do not have instance labels. Without
instance labels, evaluating interpretability is challenging, as we do not have a ground
truth instance ordering to compare to. We identify two appropriate evaluation metrics:
for datasets with instance labels, we propose the use of Normalised Discounted
Cumulative Gain at n (NDCG@n), and for datasets without instance labels, we use Area
Over the Perturbation Curve to Random (AOPCR), originally proposed by Samek et al.
(2017). While AOPCR does not require instance labels, it is very expensive to compute.
A significant difference between the two metrics is the way they weight the importance
ordering: NDCG@n prioritises performance at the start of the ordering, whereas
AOPCR equally prioritises performance across the entire ordering. We are the first to
propose both of these metrics for use in evaluating MIL interpretability, and further
discuss each metric below.

AOPCR Although originally designed for single instance supervised learning, here
we adapt AOPCR for MIL. Given an importance ordering, we successively remove the
most important instances (i.e., those with the highest values for ϕi) and measure the
change in prediction. A better ordering will show a sharper decrease in prediction, as
more supportive instances will be removed first. Conversely, a random or incorrect
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ordering will lead to a much slower decrease in prediction. Formally, when evaluating
the interpretations generated by a classifier F for X = {x1, . . . , xk} with respect to class c,
we first re-order the bag according to the instance importance scores for class c, with the
most important instances first: OX,c = {o1, o2, . . . , ok}. Note the contents of OX,c are the
same as that of X but with a different order of instances. The perturbation metric is
calculated by:

AOPC(OX,c) =
1

k − 1

k−1

∑
j=1

Fc(OX,c)− Fc(OX,c \ {o1, . . . , oj}). (4.6)

To normalise the results, one approach is to compare against the AOPC scores for
random orderings. To compensate for the stochastic nature of using random orderings,
we average over several:

AOPCR(OX,c) =
1

nRand

nRand

∑
r=1

(
AOPC(OX,c)− AOPC(OX,Rand)

)
, (4.7)

where OX,Rand is a random ordering of X and nRand is the number of random orderings.
The repeated calls to F in Equation 4.6 make AOPCR very expensive to compute,
especially when comparing to random orderings — in our experiments nRand = 10. This
can be reduced by limiting the calculation to only consider the first few instances rather
than all k − 1, but that was not something we investigated in this work. Due to the use
of random orderings, AOPCR is inherently stochastic, meaning not only do we have
variance in the orderings produced in the methods (e.g., from random sampling), but
we also have variance due to measurement. We reduced this noise by keeping the
random orderings consistent across evaluations through the use of fixed random seeds.
Compared to the NDCG@n, which is cheap to compute and deterministic, the distinct
advantage of AOPCR is that it does not require instance labels.

NDCG@n To use NDCG@n, we first need a ground truth ordering to compare to. For
a particular class, we can place each instance into one of three groups based on their
ground truth instance labels: supporting instances, neutral instances, and refuting
instances. The ideal instance ordering for that class would then have all of the
supporting instances at the beginning, followed by all the neutral instances, and then all
of the refuting instances at the end. This ground truth instance importance ordering is
then compared to the ordering OX,c for the first n instances:
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NDCG@n(OX,c) =
1

IDCG

n

∑
j=1

rel(oj)

log2(j + 1)
,

where IDCG =
n

∑
j=1

1
log2(j + 1)

and rel(oj) =


1 if oj supports class c,

−1 if oj refutes class c,

0 otherwise.

(4.8)

IDCG is the ideal discounted cumulative gain that normalises the scores across different
values of n, and n is the number of instances in the bag that support class c.

4.4.2 Datasets

Below we detail the three main datasets on which we can evaluate our interpretability
methods. These datasets were selected as they have instance labels, so we can evaluate
them using both NDCG@n and AOPCR. However, we also used the classical MIL
datasets Musk, Tiger, Elephant and Fox, which do not have instance labels.

4.4.2.1 Spatially Independent, Variable Area, and Lighting

The Spatially Independent, Variable Area, and Lighting (SIVAL) dataset (Rahmani et al.,
2008) consists of 25 classes of complex objects photographed in different environments,
where each class contains 60 images. Each image has been segmented into
approximately 30 segments (one segment = one MIL instance), and each segment is
represented by a 30-dimensional feature vector that encodes information such as the
segment’s colour and texture. The segments are labelled as containing the object or
containing background. We selected 12 of the 25 classes to be positive classes, and
randomly selected 30 images from each of the other 13 classes to form the negative class,
meaning overall we had 13 classes (12 positive and one negative). In total, we had 60
bags for each of the 12 positive classes, and 390 bags for the single negative class,
meaning the class distribution was ≈ 5.4% for each positive class and ≈ 35.1% for the
negative class. The arbitrarily chosen positive classes were: apple, banana, checkeredscarf,
cokecan, dataminingbook, goldmedal, largespoon, rapbook, smileyfacedoll, spritecan,
translucentbowl, and wd40can. We normalised each instance according to the dataset
mean and standard deviation. No other data augmentation was used. The dataset was
separated into train, validation, and test data using an 80/10/10 split. This was done
with stratified sampling in order to maintain the same data distribution across all splits.
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4.4.2.2 Four-class MNIST-Bags

The SIVAL dataset has no co-occurrence of instances from different classes, i.e., each bag
only contains one class of positive instances. Therefore, the which and what questions
are the same. To explore what happens when there are different classes of positive
instances in the same bag, we propose an extension of the MNIST-Bags dataset
introduced by Ilse et al. (2018). Our extension, four-class MNIST-Bags (4-MNIST-Bags) is
set up as follows: class 1 if 8 in the bag, class 2 if 9 in the bag, class 3 in 8 and 9 in the
bag, and class 0 otherwise.1 In this dataset, answering what questions goes beyond
answering which questions, e.g., the existence of an 8 supports classes one and three, but
refutes classes zero and two. The bag sizes were drawn from a normal distribution, with
a mean of 30 and a variance of 2. We used 2500 training bags, 1000 validation bags, and
1000 test bags. The instances in the training bags were only drawn from the original
MNIST training split, and the instances in the validation and test bags were only drawn
from the original MNIST test split, i.e., there was no overlap between training,
validation, and test instances. The classes were balanced, so, on average, there were 625
bags per class in the training data, and 250 bags per class in the validation and test data.
We normalised the MNIST images using the PyTorch normalise transformation, with a
mean of 0.1307 and a stand deviation of 0.3081. No other data augmentation was
carried out.

4.4.2.3 Colorectal Cancer

To test the applicability of the interpretability methods on larger bag sizes, we apply it
to the Colorectal Cancer (CRC) tissue classification dataset (Sirinukunwattana et al.,
2016). This is a collection of 100 microscopy images with partially annotated nuclei.
Each image is annotated with four classes of nuclei: epithelial, inflammatory, fibroblast,
and miscellaneous. We follow the same MIL labelling process as Ilse et al. (2018), in
which a bag is positive if it contains one or more nuclei from the epithelial class. This
means the problem conforms to the SMIL assumption, and there are no interactions
between instances. Of the 100 images, 50 are in the negative class (no epithelial nuclei),
and 50 are in the positive class (at least one epithelial nuclei).

Each microscopy image is 500 x 500 pixels and was split into a non-overlapping grid of
27 x 27 pixel patches (324 patches per slide). An alternative patch extraction process,
and the process originally used by Ilse et al. (2018), is to extract patches centred on each
marked nuclei. However, this method requires the nuclei to be marked for unseen data
— something our approach does not require. Our alternative patch extraction approach
explains the difference between our results and the results of Ilse et al. (2018) —

1We use n to refer to an image from the MNIST dataset that represents the number n, even though that
is not the assigned class label in the 4-MNIST-Bags dataset.
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extracting the patches using a fixed grid will include patches that do not contain any
marked nuclei (but are not just slide background), increasing the amount of
non-discriminatory data in each bag and thus making the problem harder to learn.

While we extracted 324 patches per slide, some patches were discarded as they
contained only slide background. This was achieved by using a brightness threshold —
any patch with an average pixel value above 230 (using pixel values from 0 to 255) was
discarded. This left an average of 264 patches per image, and one image was discarded
as it had zero foreground patches (this was manually verified). The remaining patches
were labelled based on the nuclei they contained. However, as some patches did not
contain any marked nuclei, they could not be labelled (it is incorrect to assume they
belong to the negative class as not all epithelial nuclei were labelled). As such, we
tailored our evaluation using NDCG@n to only consider labelled instances.

The images were normalised using the dataset mean (0.8035, 0.6499, 0.8348) and
standard deviation (0.0858, 0.1079, 0.0731). During training, we also applied three
transformations to patches at random: horizontal flips, vertical flips, and 90-degree
rotations. The dataset was separated into train, validation, and test data using a
60/20/20 split. This was done with stratified sampling in order to maintain the same
data distribution across all splits.

4.4.2.4 Classical MIL Datasets

In addition to the three datasets listed above, we also conducted experiments with four
classical MIL datasets.2 The Musk dataset (Dietterich et al., 1997) presents a drug
activity problem of identifying musks (aromatic substances) and non-musks, which is
an SMIL problem.3 The dataset contains 47 musks (positive class) and 45 non-musks
(negative class), and each molecule (bag) has several potential conformations
(instances). These different conformations (molecule shapes) are represented by 166
features. Features were normalised by subtracting the dataset mean and dividing by the
dataset standard deviation. A random stratified 70/15/15 dataset split was used.

The Tiger, Elephant, and Fox datasets (TEF; Andrews et al., 2002) operate similarly to
the SIVAL dataset detailed above. Each dataset consists of 100 positive examples of a
target animal (e.g., pictures of tigers) and 100 negative examples of other animals. The
images have been pre-processed using segmentation and feature extraction to give
instance feature vectors of length 230 that capture properties such as shape, texture, and
colour. Unlike SIVAL, the instances (feature vectors describing image segments) are not
labelled — only bag-level labels are provided. Each of the TEF datasets follows the
same process but has a different target animal (tiger, elephant, or fox). Like Musk, we

2These classical datasets do not have instance labels, therefore can only be evaluated using AOPCR.
They are also less complex than the other datasets, for example having only a few instances per bag. As
such, we focus our analysis in later sections on the SIVAL, 4-MNIST-Bags, and CRC datasets.
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normalised by the dataset mean and standard deviation, and used a random stratified
70/15/15 dataset split.

4.4.3 Models and Methods

To highlight the model-agnostic abilities of the proposed methods, for each dataset, we
trained four different types of multi-class MIL model: Embedding (Wang et al., 2018),
Instance (Wang et al., 2018), Attention (Ilse et al., 2018), and Graph (Tu et al., 2019).
Each model was tuned independently for each dataset, and we also tuned the learning
rate, weight decay, and dropout hyperparameters. This tuning was achieved with the
Optuna Python library (Akiba et al., 2019). For tuned model architectures and
hyperparameters, see Appendix A. We provide further details on each model below.

Embedding Each instance is embedded to a fixed size, and then these embeddings are
aggregated to give a single bag embedding. This aggregation can either take the mean
(mil-mean) or max (mil-max) of the instance embeddings. The bag embedding is then
classified to give an overall bag prediction. For this model, we tuned the number and
size of fully connected (FC) layers, as well as the choice of aggregation function.

Instance A prediction is made for each individual instance, and then these are
aggregated to a single outcome for the bag as a whole. Similar to the Embedding model,
we tuned the number and size of FC layers and the aggregation function (mean or max).

Attention Each instance is embedded to a fixed size, and then the mil-attn block
produces an attention value for each instance embedding. The instance embeddings are
then aggregated to a single bag embedding by performing a weighted sum based on the
attention values. The bag embedding is then classified to give an overall bag prediction.
The mil-attn block is the same as per the MIL attention mechanism proposed by Ilse
et al. (2018), i.e., using a single hidden layer. We tuned the number and size of the FC
layers, as well as the size of the hidden attention layer.

Graph The GNN model treats the bag as a fully connected graph and uses graph
convolutions to propagate information between instances. Initially, the original
instances are embedded to a fixed size. These instance embeddings are then passed
onto a GNNembed block and a GNNcluster block, the output of which is used to reduce
the graph representation down into a single embedding using differentiable pooling.
The final bag representation is then classified to give an overall bag prediction. For

3Note that we are using the Musk1 dataset, rather than Musk2, as the latter has much larger bag sizes,
making the use of AOPCR infeasible.
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more details see Tu et al. (2019). We tuned the number and size of the embedding, GNN,
and classifier layers.

Aside from Embedding, each of the above models provides its own inherent
interpretability method that we can compare our methods against. In addition to
comparing our independent-instance methods and MILLI with the inherent
interpretability of these models, we also compare against LIME and SHAP using both
random sampling and guided sampling (choosing coalitions that maximise the weight
kernel). This means that in total we are evaluating nine different interpretability
methods: inherent interpretability, the three independent-instance methods
(Section 4.3.2), two LIME methods, two SHAP methods, and MILLI (Section 4.3.3). Note
that, aside from the inherent interpretability methods, these methods are either novel
(independent-instance methods and MILLI) or are applied to MIL for the first time in
this study (LIME and SHAP).

4.4.4 Interpretability Hyperparameter Selection

In this section, we discuss our method for hyperparameter selection in the
interpretability methods and detail the hyperparameters that we found to be most
effective. An advantage of the inherent interpretability and independent-instance
methods is that they do not have hyperparameters, i.e., we only had to select
hyperparameters for the local surrogate interpretability methods. First, we discuss our
choice of hyperparameters for LIME, and then our choice of hyperparameters for MILLI.

LIME hyperparameters When using the LIME weight kernel, there are two
hyperparameters to tune. Firstly, the distance measures that are commonly used are L2
and cosine distance. In our experiments, we found very little difference between each of
these distance measures, therefore we arbitrarily chose to use L2 distance in all of our
experiments. The second hyperparameter is the kernel width, which determines the
weighting of coalitions, i.e., a large kernel width means all coalitions are weighted more
evenly, and a small kernel width prioritises larger coalitions. We chose to use a kernel
width for all of our experiments that is determined by the average bag size, such that
the half coalition (i.e., |v| = 0.5k) is weighted at 0.5.

MILLI hyperparameters For MILLI, there were three hyperparameters to tune: the
number of samples, α, and β. For the number of samples, we generated sample size
plots (see Section 4.6.2), and chose the number of samples to be at the point where all
the methods had reasonably converged. For α and β we ran a grid search over the
possible values and chose the best-performing pair of parameters. The hyperparameters
were tuned for each dataset, except for the TEF datasets, in which we only tuned on
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Tiger and then used the same hyperparameters across all three datasets. In Table 4.1, we
provide the chosen hyperparameters for each dataset, as well as the expected coalition
size E[|v|] determined by α and β. For the CRC, Musk and TEF datasets, the chosen
parameters produce small values for E[|v|], i.e., the sampling is heavily biased towards
smaller coalitions, which is expected as these are instance-independent datasets.
Conversely, the parameters for the 4-MNIST-Bags focus on sampling larger coalitions
that are able to capture the instance interactions in the dataset. Although the SIVAL
dataset is instance-independent, the parameters also focus on sampling larger coalitions.
This could be because, although the instances are independent, it may be difficult to
classify an object from just one instance, i.e., several instances are needed to make the
correct decision. We also note that, in all cases, α < 0.5, i.e., the sampling is biased
towards instances ranked lower in the initial importance ordering used by MILLI. Our
explanation for this is that it is easy to understand the contribution of discriminatory
instances, as they have a large effect on the model prediction, but it is more difficult to
understand the contribution of non-discriminatory instances, as they have much less of
an effect. Therefore, more samples containing non-discriminatory instances are required
to properly understand their effect, hence biasing the sampling towards them.

TABLE 4.1: MILLI hyperparameters selected for the different MIL datasets.

Dataset Sample Size α β E[|v|]
SIVAL 200 0.05 -0.01 13
4-MNIST-Bags 150 0.05 0.01 16
CRC 1000 0.008 -5.0 2
MUSK 150 0.3 -1.0 2
TEF 150 0.3 0.01 3

4.4.5 Training Process

We used a consistent process for training all the models across all the datasets. A batch
size of one was used, i.e., a batch of a single bag. Models were trained to minimise
cross-entropy loss using the Adam optimiser. We utilised early stopping based on
validation loss — if the validation loss had not decreased for 10 epochs then we
terminated the training procedure and reset the model to the point at which it caused
the last decrease in validation loss. Otherwise, the maximum number of epochs was 100.
We tuned the learning rate, weight decay, and dropout for each model type and on each
dataset.

For the 4-MNIST-Bags and CRC datasets, the models used a convolutional Feature
Extractor (FE). These FEs were kept consistent across each model, i.e., the architecture
was fixed, but the weights were learnt. For 4-MNIST-Bags, the FE produced feature
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vectors of length 800, and for CRC they were of length 1200. For more details, see
Appendix A.

4.5 Results

We split our results into two parts: first the more complex modern MIL datasets (SIVAL,
4-MNIST-Bags, and CRC), and then the classic MIL datasets (Musk, Tiger, Elephant, and
Fox).

4.5.1 Modern Multiple Instance Learning Dataset Results

For each dataset, we measured the performance of each interpretability method on each
of the four MIL models. For the SIVAL dataset, we measured the performance on only
the negative class and the bag’s true class, but for all the other datasets we evaluated the
interpretability over every class. This distinction was made as we know that each
SIVAL bag can only contain instances from one positive class, therefore it is not
necessary to evaluate over all possible classes. We present the interpretability results
run against the test set for the SIVAL, 4-MNIST-Bags, and CRC datasets in Tables 4.2, 4.3,
and 4.4 respectively. The results are averaged over ten repeat trainings of each model,
and we also give the test accuracy of each of the underlying MIL models.

By analysing the NDCG@n interpretability results across these three datasets, we find
that MILLI performs best with an average of 0.85, followed by the GuidedSHAP and
Combined methods (both with an average of 0.81). For the average AOPCR results

TABLE 4.2: SIVAL interpretability NDCG@n / AOPCR results. For all of the inter-
pretability methods, the standard error of the mean was 0.01 or less.

Methods Embedding Instance Attention Graph Overall

Model Acc. 0.819 0.808 0.813 0.781 0.805

Inherent - 0.813 / 0.265 0.717 / 0.005 0.586 / 0.023 0.705 / 0.098

Single 0.825 / 0.280 0.813 / 0.266 0.801 / 0.302 0.734 / 0.194 0.793 / 0.261
One Removed 0.778 / 0.256 0.837 / 0.308 0.736 / 0.293 0.776 / 0.231 0.782 / 0.272
Combined 0.828 / 0.291 0.828 / 0.294 0.803 / 0.316 0.762 / 0.227 0.805 / 0.282

RandomSHAP 0.801 / 0.284 0.807 / 0.300 0.766 / 0.322 0.784 / 0.250 0.789 / 0.289
GuidedSHAP 0.826 / 0.291 0.819 / 0.290 0.790 / 0.313 0.765 / 0.235 0.800 / 0.282
RandomLIME 0.809 / 0.295 0.815 / 0.310 0.776 / 0.335 0.793 / 0.258 0.798 / 0.299
GuidedLIME 0.780 / 0.259 0.830 / 0.310 0.742 / 0.296 0.776 / 0.233 0.782 / 0.274

MILLI 0.823 / 0.283 0.827 / 0.307 0.794 / 0.307 0.790 / 0.239 0.808 / 0.284
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TABLE 4.3: 4-MNIST-Bags interpretability NDCG@n / AOPCR results. Graph takes four
times as long for a single model pass than the other models, so calculating its AOPCR
results on this dataset was infeasible (see Section 4.4.1). For all of the interpretability
methods, the standard error of the mean was 0.01 or less.

Methods Embedding Instance Attention Graph Overall

Model Acc. 0.971 0.974 0.967 0.966 0.970

Inherent - 0.723 / 0.136 0.750 / 0.002 0.419 / - 0.630 / 0.069

Single 0.722 / 0.138 0.723 / 0.137 0.778 / 0.164 0.761 / - 0.746 / 0.146
One Removed 0.811 / 0.187 0.810 / 0.186 0.809 / 0.143 0.786 / - 0.804 / 0.172
Combined 0.775 / 0.184 0.775 / 0.185 0.816 / 0.183 0.804 / - 0.792 / 0.184

RandomSHAP 0.813 / 0.186 0.809 / 0.185 0.825 / 0.178 0.828 / - 0.819 / 0.183
GuidedSHAP 0.773 / 0.187 0.773 / 0.188 0.816 / 0.183 0.805 / - 0.792 / 0.186
RandomLIME 0.828 / 0.189 0.825 / 0.189 0.841 / 0.179 0.838 / - 0.833 / 0.186
GuidedLIME 0.760 / 0.189 0.756 / 0.187 0.785 / 0.145 0.776 / - 0.769 / 0.174

MILLI 0.947 / 0.190 0.943 / 0.189 0.917 / 0.181 0.959 / - 0.942 / 0.186

TABLE 4.4: CRC interpretability NDCG@n results. As this dataset has much larger bag
sizes (264 instances per bag on average), it is infeasible to compute its AOPCR results
(see Section 4.4.1). For all of the interpretability methods, the standard error of the
mean was 0.02 or less.

Methods Embedding Instance Attention Graph Overall

Model Acc. 0.795 0.795 0.830 0.770 0.797

Inherent - 0.845 0.692 0.684 0.740

Single 0.815 0.845 0.847 0.786 0.823
One Removed 0.698 0.682 0.701 0.815 0.724
Combined 0.815 0.845 0.846 0.803 0.827

RandomSHAP 0.695 0.690 0.717 0.703 0.701
GuidedSHAP 0.815 0.845 0.846 0.804 0.827
RandomLIME 0.695 0.702 0.716 0.813 0.731
GuidedLIME 0.687 0.699 0.701 0.818 0.726

MILLI 0.753 0.800 0.810 0.780 0.786

(including the results on the classical MIL datasets, see Section 4.5.2), we find that
Combined, GuidedSHAP, RandomLIME, and MILLI are the best-performing methods.
However, the overall difference in performance between the methods is much less than
what we observe for the NDCG@n metric. For the 4-MNIST-Bags dataset, the difference
in performance of MILLI on NDCG@n vs AOPCR is due to the difference in weighting
between the metrics: MILLI achieves a better ordering for the most important instances
(outperforms other methods on NDCG@n), but gives the same ordering as other
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methods for less important instances (equal performance on AOPCR). In the majority of
cases, all of our proposed model-agnostic methods outperform the inherent
interpretability methods and are relatively consistent in performance across all models.
For the SIVAL dataset, the independent-instance methods perform well, which is
expected as the instances are indeed independent. However, on the 4-MNIST-Bags
dataset, MILLI excels as it samples informative coalitions that capture the instance
interactions. On the CRC dataset, methods that can isolate individual instances, (i.e., the
Single, Combined, and GuidedSHAP methods) perform well due to instance
independence in this dataset. Furthermore, if we consider the witness rate (WR; the
proportion of key instances in each bag; Carbonneau et al., 2018) of the datasets, we find
that the CRC dataset has a higher WR (27.47%) than SIVAL (15.28%) and 4-MNIST-Bags
(8.04%). This means, that with larger coalitions, it becomes more difficult to isolate the
contributions of individual instances, which is why the One Removed and Random
sampling methods struggle.

4.5.2 Classic Multiple Instance Learning Dataset Results

In this section, we detail our additional results on the Musk, Tiger, Elephant, and Fox
classical MIL datasets. Although these datasets do not have instance labels, since they
are widely used MIL datasets, it is useful to see how our interpretability methods
perform on them. Each of these datasets is instance-independent, and as they have a
low number of instances per bag, we adapted our local surrogate methods to allow
sampling with repeats (otherwise we cannot sample enough coalitions). In our previous
experiments, we restricted the local surrogate methods to sampling without repeats,
which was not an issue with the larger bag sizes in the SIVAL, 4-MNIST-Bags, and CRC
datasets. For each of these classic datasets, we used the same model hyperparameters
that we used for SIVAL (see Appendix A.2), i.e., we did not retune the training
parameters or model architectures. However, we did tune the parameters for the
interpretability methods, as discussed in Section 4.4.4. We give the interpretability
results as well as the model performance for Musk (Table 4.5), Tiger (Table 4.6),
Elephant (Table 4.7), and Fox (Table 4.8) below.

We find that there is very little difference in interpretability performance for each of our
proposed methods across these four datasets. This is to be expected, as the instances are
independent, therefore the independent-instance methods, as well as the local surrogate
methods, are able to identify the important instances, i.e., there is little to be gained by
sampling coalitions when each instance can be understood in isolation. However, this
reinforces the applicability of all of our proposed methods. We note that the Attention

and Graph perform poorly in these experiments — this is because they are unable to
condition their outputs on a specific class (i.e., they can only answer which questions,
not what questions). We also note that the performance is much worse on the Fox
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TABLE 4.5: Musk interpretability AOPCR results. For all of the interpretability methods,
the standard error of the mean was 0.015 or less.

Methods Embedding Instance Attention Graph Overall

Model Acc. 0.871 0.836 0.793 0.793 0.823

Inherent - 0.108 0.002 0.003 0.036

Single 0.123 0.108 0.113 0.090 0.108
One Removed 0.108 0.107 0.088 0.076 0.095
Combined 0.124 0.107 0.116 0.088 0.109

RandomSHAP 0.115 0.104 0.110 0.077 0.102
GuidedSHAP 0.122 0.106 0.116 0.084 0.107
RandomLIME 0.113 0.107 0.110 0.080 0.102
GuidedLIME 0.117 0.106 0.102 0.077 0.101

MILLI 0.117 0.105 0.109 0.084 0.104

TABLE 4.6: Tiger interpretability AOPCR results. For all of the interpretability methods,
the standard error of the mean was 0.005 or less.

Methods Embedding Instance Attention Graph Overall

Model Acc. 0.827 0.807 0.807 0.800 0.810

Inherent - 0.124 0.001 0.000 0.042

Single 0.132 0.125 0.120 0.082 0.115
One Removed 0.123 0.127 0.114 0.081 0.111
Combined 0.130 0.127 0.124 0.082 0.116

RandomSHAP 0.124 0.122 0.121 0.080 0.112
GuidedSHAP 0.130 0.125 0.121 0.082 0.115
RandomLIME 0.128 0.125 0.119 0.081 0.113
GuidedLIME 0.129 0.125 0.122 0.082 0.115

MILLI 0.128 0.125 0.120 0.081 0.114

dataset. Here, the underlying MIL models perform poorly, so it is unsurprising that the
interpretability methods also perform poorly.

4.6 Discussion

The different sampling approaches used in this work have distinct advantages. When
there are interactions between instances, RandomSHAP and RandomLIME are better
than GuidedSHAP and GuidedLIME as they form larger coalitions that are more likely
to capture the instance interactions. However, for the CRC dataset, where there are a
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TABLE 4.7: Elephant interpretability AOPCR results. For all of the interpretability
methods, the standard error of the mean was 0.006 or less.

Methods Embedding Instance Attention Graph Overall

Model Acc. 0.857 0.863 0.867 0.853 0.860

Inherent - 0.130 0.000 0.000 0.043

Single 0.127 0.131 0.127 0.105 0.122
One Removed 0.117 0.129 0.105 0.103 0.114
Combined 0.126 0.130 0.127 0.106 0.122

RandomSHAP 0.124 0.126 0.119 0.102 0.118
GuidedSHAP 0.127 0.130 0.124 0.105 0.122
RandomLIME 0.124 0.128 0.121 0.104 0.119
GuidedLIME 0.123 0.130 0.118 0.104 0.119

MILLI 0.124 0.128 0.121 0.103 0.119

TABLE 4.8: Fox interpretability AOPCR results. For all of the interpretability methods,
the standard error of the mean was 0.002 or less.

Methods Embedding Instance Attention Graph Overall

Model Acc. 0.600 0.610 0.620 0.580 0.603

Inherent - 0.050 0.001 0.000 0.017

Single 0.044 0.049 0.041 0.021 0.039
One Removed 0.043 0.049 0.040 0.021 0.038
Combined 0.044 0.050 0.041 0.021 0.039

RandomSHAP 0.044 0.049 0.041 0.021 0.039
GuidedSHAP 0.045 0.050 0.042 0.021 0.040
RandomLIME 0.044 0.050 0.041 0.021 0.039
GuidedLIME 0.044 0.050 0.041 0.021 0.039

MILLI 0.043 0.049 0.041 0.022 0.039

large number of independent instances and a high WR, RandomSHAP, RandomLIME
and GuidedLIME struggle as they cannot form small coalitions. MILLI performs
relatively well across all datasets as the size of its sampled coalitions can be adapted
depending on the dataset, demonstrating its generalisability. However, it is still
outperformed by GuidedSHAP on the CRC dataset. One possible explanation for this is
that MILLI is limited to sampling only smaller or larger coalitions, whereas
GuidedSHAP samples both large and small coalitions. One approach for improving
MILLI would be to incorporate paired sampling (Covert and Lee, 2021), where for every
sampled coalition v, we also sample its complement coalition 1 − v. Following the
advice of Carbonneau et al. (2018), further MIL studies on more complex datasets, such
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as Pascal VOC (Everingham et al., 2010), could also be insightful for evaluating MIL
interpretability methods. It would also be beneficial to examine if these techniques are
applicable to MIL domains beyond classification, e.g. MIL regression as in Wang et al.
(2020a).

4.6.1 Interpretability Outputs

Below we visualise the interpretability outputs for SIVAL (Section 4.6.1.1),
4-MNIST-Bags (Section 4.6.1.2), and CRC (Section 4.6.1.3).

4.6.1.1 SIVAL Interpretability Outputs

Interpretability outputs for the SIVAL dataset are created by ranking the instances in a
bag according to some interpretability function (i.e., by using MILLI), and then selecting
the top n, where n is the known number of key instances in the bag. Then, the
corresponding segment for each instance is weighted by the function log2(i + 1)−1,
where i is the instance’s position in the ranking (this is the same scaling used in
NDCG@n). The other instances all received a weighting of zero. The brightness of each
segment in the output image then corresponds with its relative importance according to
the interpretability method. Figures 4.3 to 4.6 give example SIVAL interpretations.

FIGURE 4.3: The interpretability output for two examples of the cokecan class in the
SIVAL dataset. The first column shows the original images, the second column the
ground truth segments that contain the object, and the final column is the output from
MILLI. The interpretations show the model is relying heavily on red segments as it also
picks up on the red in the background as being important.
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FIGURE 4.4: The interpretability output for two examples of the dataminingbook class in
the SIVAL dataset. Again, the interpretations show the model is relying heavily on the
colour orange as an indicator of the object’s location, as it also picks up on the similar
colours in the background, including the reflection of the book in the table.

FIGURE 4.5: The interpretability output for two examples of the goldmedal class in the
SIVAL dataset. Here, the interpretations show the model is ignoring the gold medal
itself, and instead focusing on the red ribbon, i.e., if it were shown the medal without
the ribbon, it would likely misclassify it.

4.6.1.2 4-MNIST-Bags Interpretability Outputs

To demonstrate how MILLI captures instance interactions, and to show the limitations
of existing methods that cannot condition their output for a particular class, we
compare the MILLI interpretations with the attention interpretations on the
4-MNIST-Bags dataset (Figure 4.7). As this bag contains an 8 and a 9, the correct label for
it is class three. Both the MILLI and attention methods have identified the 8 and 9
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FIGURE 4.6: The interpretability output for two examples of the wd40can class in the
SIVAL dataset. Here, the interpretations show the model is predominantly focusing on
the strong yellow colour at the top of the can and sometimes picks out the letters and
red cap. The rest of the bottle is largely ignored, meaning if the top half were obscured,
the model would likely misclassify it.

instances as key instances, i.e., they have both answered the which question. However,
only MILLI correctly identifies that the 8 refutes class two and that the 9 refutes class
one, answering the what question, something that the attention values do not do.
Additional examples for other positive classes are given in Figure 4.8 and Figure 4.9.

FIGURE 4.7: An example of the identification of key instances for the 4-MNIST-Bags
experiment. The top row shows the attention value for each instance, and the bottom
three rows show the output of MILLI for classes three, two, and one respectively (green
= support, red = refute).

4.6.1.3 CRC Interpretability Outputs

For the CRC interpretability outputs, the important patches are found by using an
interpretability method to output the top n patches that support a particular class,
where n is the number of known important instances for that class. We then highlight
these patches while dimming the other patches to produce an interpretation of the
model’s decision-making. As the ground-truth labelling was not exhaustive, patches
may contain epithelial nuclei without being labelled as such. By using MILLI, it is
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FIGURE 4.8: The interpretability output for a class two bag on the 4-MNIST-Bags
experiment. The top row shows the attention value for each instance, and the bottom
two rows show the output of MILLI for classes two and zero respectively. We can see
that both Attention and MILLI have identified the 9s as important, but only MILLI is
able to also say that the 9s support class two and refute class zero.

FIGURE 4.9: The interpretability output for a class one bag on the 4-MNIST-Bags experi-
ment. We can see that both Attention and MILLI have identified the 8s as important,
but only MILLI is able to also say that the 8s support class one and refute class zero.
Also, note that the colours are less strong for the final 8 — the digit is partially obscured,
so the model is less confident.

possible to identify the patches used for decision-making, therefore a further
investigation into the types of nuclei in these patches would reveal more information
about how the model makes its decisions and potentially identify missed labels in the
dataset; something that would not be possible without interpretability. Example
outputs are given in Figures 4.10 to 4.13.

4.6.2 Sample Size Experiments

LIME, SHAP, and MILLI all require the number of sampled coalitions to be selected. A
greater number of coalitions means there is more data to fit the surrogate model on,
therefore it is more likely to be faithful to the underlying model. However, the more
samples that are taken, the more expensive the computation. We give results for
Embedding (Figure 4.14), Instance (Figure 4.15), Attention (Figure 4.16), and Graph

(Figure 4.17).

MILLI and GuidedSHAP are the most consistent in terms of performance and efficiency,
and we find the trends are relatively consistent across all the models. MILLI is
particularly effective on the 4-MNIST-Bags dataset. One considerable difference is the
performance of RandomLIME and GuidedLIME on the CRC dataset for Graph — for all
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FIGURE 4.10: The interpretability output for an image in the CRC dataset. From left
to right, the figure shows the original image, the image with background patches
removed, the ground truth patches for the image’s label, and the interpretability output
from MILLI. In this example, the image is class zero (i.e., non-epithelial), meaning the
highlighted patches contain mostly fibroblast and inflammatory nuclei. As shown here,
MILLI has identified that the model is using the same patches as the ground truth to
make a decision, indicating that the model has learnt to correctly identify fibroblast and
inflammatory nuclei as supporting instances for non-epithelial images.

FIGURE 4.11: The interpretability output for a positive image in the CRC dataset. In
this example, the ground truth patches all contain at least one epithelial nuclei. MILLI
has identified that the model is using most of the same patches as the ground truth to
make a decision, indicating that the model has learnt to correctly identify epithelial
nuclei as supporting class one.

FIGURE 4.12: The interpretability output for a negative image in the CRC dataset. In
this example, the patches are sparse — there are a lot of background patches that are
removed, and the key patches are spread out (as opposed to being connected as in the
previous examples). Again, MILLI is able to correctly identify the patches that support
the negative class.
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FIGURE 4.13: The interpretability output for a positive image in the CRC dataset. In
this example, MILLI has identified some of the ground truth patches, but also additional
patches that are not labelled as epithelial in the ground truth labelling.

other models, both LIME methods perform poorly on the CRC dataset. Further
investigation is required to understand why this happens. However, the LIME methods
are still outperformed by MILLI and GuidedSHAP on the CRC dataset, even for the
Graph model. For all methods, it is a case of diminishing returns, where additional
samples only lead to a small increase in performance.

FIGURE 4.14: The effect of sample size on interpretability performance for Embedding.

FIGURE 4.15: The effect of sample size on interpretability performance for Instance.
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FIGURE 4.16: The effect of sample size on interpretability performance for Attention.

FIGURE 4.17: The effect of sample size on interpretability performance for Graph.
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4.7 Conclusion

In this chapter, we have discussed the process of model-agnostic interpretability for
MIL. Along with defining the requirements for MIL interpretability, we have presented
our own approaches and compared them to existing inherently interpretable MIL
models. By analysing the methods across several datasets, we have shown that
independent-instance methods can be effective, but local surrogate methods are
required when there are interactions between the instances. All of our proposed
methods are more effective than existing inherently interpretable models and are able to
not only identify which are the key instances, but also say what classes they support and
refute.

In this chapter, the effect of changing the patch size for the CRC dataset was not
investigated. This has implications for interpretability: a small patch size improves the
resolution at which interpretations are made (i.e., fewer cells per patch), but if the
patches become too small, the MIL problem becomes impossible to learn as there is not
enough information in each patch. Furthermore, this chapter only considered
classification problems, so further work is required to investigate MIL interpretability in
other styles of problems.

As such, in the next chapter, we continue working with computer vision problems, but
transition to the new application domain of Earth Observation (EO) for climate change
monitoring. In this domain, we investigate the effect of changing the MIL patch size,
extend the approach to support multiple resolutions, and how interpretability can be
achieved for MIL regression problems.
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Chapter 5

Scene-to-Patch Earth Observation
with Multi-Resolution Multiple
Instance Learning

This chapter presents a combination of two pieces of work. The first was published in
the NeurIPS Workshop: Tackling Climate Change with Machine Learning in 2022, and
the second was published in the Journal of Environmental Data Science in 2023. This
work was supported by Ying-Jung Deweese (Georgia Institute of Technology) who
provided insight on the climate background and manuscript feedback — all technical
development and design was done by myself. The content is mostly unchanged from its
original format: elements of the original appendix have been brought into the main
body, certain sections have been slightly reworded, and some terminology and notation
has been modified for consistency with the rest of this thesis.

Workshop Paper

Joseph Early, Ying-Jung Deweese, Christine Evers, and Sarvapali Ramchurn.
Scene-to-patch Earth observation: Multiple instance learning for land cover
classification. NeurIPS Workshop: Tackling Climate Change with Machine Learning, 2022b.
URL https://arxiv.org/abs/2211.08247

GitHub: https://github.com/JAEarly/MIL-Land-Cover-Classification

Journal Paper

Joseph Early, Ying-Jung Chen Deweese, Christine Evers, and Sarvapali Ramchurn.
Extending scene-to-patch models: Multi-resolution multiple instance learning for Earth
observation. Environmental Data Science, 2, 2023. URL
https://doi.org/10.1017/eds.2023.30

GitHub: https://github.com/JAEarly/MIL-Multires-EO

https://arxiv.org/abs/2211.08247
https://github.com/JAEarly/MIL-Land-Cover-Classification
https://doi.org/10.1017/eds.2023.30
https://github.com/JAEarly/MIL-Multires-EO
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5.1 Introduction

To tackle critical problems such as climate change and Natural Disaster
Response (NDR), it is essential to collect information and monitor ongoing changes in
Earth systems (Oddo and Bolten, 2019). Remote Sensing (RS) for Earth
Observation (EO) is the process of acquiring data using instruments equipped with
sensors, e.g., satellites or unmanned aerial vehicles (UAVs). Due to ever-expanding
volumes of EO data, Machine Learning (ML) has been widely used in automated RS for
a range of applications. However, curation of the large labelled EO datasets required for
ML is expensive — accurately labelling the data takes a lot of time and often requires
specific domain knowledge. This results in bottlenecks and concerns about a lack of
suitable EO datasets for ML (CCAI, 2022; Hoeser and Kuenzer, 2020). Beyond training,
using ML models for real-time monitoring means the model size has to be restricted:
models that are too large will take too long to run (as well as being more expensive).

In this work, we focus on two EO RS applications: Land Cover Classification (LCC) and
NDR. LCC is an important task in EO and can be applied to agricultural health & yield
monitoring, deforestation, sustainable development, urban planning, and water
availability (Demir et al., 2018; Hoeser et al., 2020). Natural disasters (floods,
earthquakes, etc.) are dynamic processes that require rapid response in order to save
assets and lives. ML approaches can provide near real-time monitoring and change
detection for NDR, as well as mitigate supply chain issues (Oddo and Bolten, 2019). A
common objective in both LCC and NDR is image segmentation (Hoeser et al., 2020;
Munawar et al., 2021). This involves separating images into different classes (e.g., urban
land, forest land, agricultural land, etc.) or objects (e.g., houses, vehicles, people, etc.).
Training ML models to perform automated segmentation typically requires an EO
dataset that has already been segmented, i.e., each image has a corresponding set of
annotations that mark out the different objects or class regions. The annotation process
often has to be done by hand and is very expensive and time-consuming. For example,
each image in the FloodNet dataset (used in this work) took approximately one hour to
annotate (Rahnemoonfar et al., 2021).

In this chapter, we propose a new approach to segmentation for EO, in which cost- and
time-intensive segmentation labels are not required. Instead, only scene-level
summaries are needed (which are much quicker to curate). This is achieved by
reframing segmentation as a Multiple Instance Learning (MIL) regression problem. To
solve this problem, we propose Scene-to-Patch (S2P) MIL models that produce
segmented outputs without requiring segmentation labels and are also able to preserve
high-resolution data during training and inference. They are effectively able to
transform the low-resolution scene labels used in training into high-resolution patch
predictions. Furthermore, we explore the use of single-resolution and multi-resolution
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S2P approaches for both satellite and aerial imagery. Specifically, our contributions are
as follows:

1. We propose S2P models for both single-resolution and multi-resolution inputs
and outputs.

2. We apply our novel S2P approach to LCC (satellite data) and disaster response
monitoring (aerial imagery), comparing it to three baselines.

3. We investigate how changing the configuration of our approach affects its
performance.

4. We show how our approach is inherently interpretable at multiple resolutions,
allowing pixel-level segmentation of EO images without requiring pixel-level
labels during training.

The rest of this chapter is laid out as follows. Section 5.2 details the background
literature and related work. Section 5.3 introduces our S2P approach and its
multi-resolution extension. Our experiments are presented in Section 5.4, with a further
discussion in Section 5.5. Section 5.6 concludes.

5.2 Background and Related Work

In this section, we provide the background literature to our work, covering LCC, NDR,
and their existing ML solutions. We also discuss MIL and its multi-resolution
extensions.

LCC In EO, ML can be applied to monitoring and forecasting land surface patterns,
involving ecological, hydrological, agricultural, and socioeconomic domains (Liu et al.,
2017). For example, satellite images can be used to track carbon sequestration and
emission sources, which is useful for monitoring greenhouse gas (GHG) levels (Rolnick
et al., 2022). The way land is used is both impacted by and contributes to climate change
— it is estimated that land use is responsible for around a quarter of global GHG
emissions, and improved land management could lead to a reduction of about a third of
emissions (Rolnick et al., 2022). Furthermore, changes in land use can have significant
effects on the carbon balance within ecosystem services that contribute to climate
change mitigation (Friedlingstein et al., 2020). In order to work towards UN Net Zero
emission targets (Sadhukhan, 2022), there is a need for improved understanding and
monitoring of how land is used, i.e., real-time monitoring that facilitates better policy
design, planning, and enforcement (Kaack et al., 2022). For example, automated LCC
with ML can be used to determine the effect of regulation or incentives to drive better
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land use practices (Rolnick et al., 2022), and for monitoring the amount of acreage in use
for farmland, allowing the assessment of food security and GHG emissions (Ullah et al.,
2022).

NDR The increasing magnitude and frequency of extreme weather events driven by
climate change are accelerating the change of suitable land areas for cropland and
human settlement (Elsen et al., 2022), and raising the need for timely & effective NDR.
With recent advances in EO, RS is a valuable approach in NDR efforts, providing near
real-time information to help emergency responders execute their response efforts, plan
emergency routes, and identify effective lifesaving strategies. For instance, Sentinel-2
data has been used for flood response (Caballero et al., 2019), synthetic aperture radar
(SAR) imagery has been used for mapping landslides (Burrows et al., 2019) & wildfire
patterns (Ban et al., 2020), and helicopter & UAV imagery has been used to identify
damaged buildings and debris following hurricanes (Pi et al., 2020). RS is only one
aspect of utilising automated data processing techniques to facilitate improved NDR;
other paradigms include digital twins (Fan et al., 2021) and natural language processing
(Zhang et al., 2019).

Existing Approaches A common problem type in both LCC and NDR is image
segmentation. Here, the aim is to assign each pixel in an input image to a class, such
that different objects or regions in the original image are separated and classified. For
example, LCC segmentation typically uses classes such as urban, agricultural, forest, etc.
In image segmentation settings, most models require the original training images to be
annotated with segmentation labels, i.e., all pixels are labelled with a ground-truth class.
There are several existing approaches to image segmentation, such as Fully
Convolutional Networks (Long et al., 2015), U-Net (Ronneberger et al., 2015), and
Pyramid Networks (Lin et al., 2017). Existing works have applied these or similar
approaches to LCC (Karra et al., 2021; Kuo et al., 2018; Rakhlin et al., 2018; Seferbekov
et al., 2018; Tong et al., 2020; Wang et al., 2020b); we refer readers to Hoeser and
Kuenzer (2020) for a more in-depth review of existing work. For NDR, examples of
existing work include wildfire segmentation with U-Net (Khryashchev and Larionov,
2020), and flooding segmentation using Multi3Net (Rudner et al., 2019).

MIL In conventional supervised learning, each piece of data is given a label. However,
in MIL, data are grouped into bags of instances, and only the bags are labelled, not the
instances (Carbonneau et al., 2018). This reduces the burden of labelling, as only the
bags need to be labelled, not every instance. In this work, we utilise MIL neural
networks (Wang et al., 2018). Extensions such as attention (Ilse et al., 2018), graph
neural networks (Tu et al., 2019), and long short-term memory (Early et al., 2022a; Wang
et al., 2020a, Chapter 6) exist, but these are not explored in this work. MIL has
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previously been used in EO data, for example fusing panchromatic and multi-spectral
images (Liu et al., 2017), settlement extraction (Vatsavai et al., 2013), landslide mapping
(Zhang et al., 2020), crop yield prediction (Wang et al., 2012), and scene classification
(Wang et al., 2022). However, to the best of the authors’ knowledge, this work is the first
to study the use of MIL for generic multi-class LCC and NDR.

Multi-Resolution MIL When using MIL in imaging applications, patches are
extracted from the original images to form bags of instances. As part of this patch
extraction process, it is necessary to choose the number and size of patches, which
determines the effective resolution at which the MIL model is operating (and affects the
overall performance of the model). There is an inherent trade-off when choosing the
patch size: patches must be large enough to capture meaningful information, but small
enough such that they can be processed with ML (or that downsampling does not lead
to a loss of detail). To overcome this trade-off, prior research has investigated the use of
multi-resolution approaches, where several different patch sizes are used (if only a
single patch size is used, the model is considered to be operating at a single resolution).
Existing multi-resolution MIL approaches typically focus on medical imaging
(Hashimoto et al., 2020; Li et al., 2021a; Li and Zhang, 2020; Marini et al., 2021) as
opposed to EO data (we discuss these methods further in Section 5.3.3). Non-MIL
multi-resolution approaches have been applied in EO domains such as ship detection
(Wang et al., 2019a) and LCC (Robinson et al., 2019), but to the best of the authors’
knowledge, we are the first to propose the use of multi-resolution MIL methods for
generic EO. In the next section, we introduce our MIL S2P method for both single and
multiple resolutions.

5.3 Methodology

In this section, we present our novel S2P methodology. First, in Sections 5.3.1 and 5.3.2,
we introduce our single resolution S2P approach. We then show how this can be
extended to multi-resolution settings, explaining our novel model architecture
(Section 5.3.3), and how it combines information from multiple resolutions
(Section 5.3.4).

5.3.1 Scene-to-Patch Overview

Predictions and labelling in computer vision problems can be split into three tiers of
operation:
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1. Scene Level: The image is considered as a whole. Classic convolutional neural
networks (CNNs) are examples of scene-level models, where the entire image is
used as input, and each image has a single class label. An EO example of a
scene-level approach is brick kiln identification (Lee et al., 2021a).

2. Patch Level: Images are split into small patches (typically tens or hundreds of
pixels). This is a standard approach in MIL, where a group of patches extracted
from the same image form a bag of instances. In most cases, labelling and
prediction occur only at the bag (scene) level. However, depending on the dataset
and MIL model, labelling and prediction can occur at the patch level.

3. Pixel Level: Labelling and predictions are performed on the scale of individual
pixels. Segmentation models (e.g., U-Net; Ronneberger et al., 2015) are pixel-level
approaches. They typically require pixel-level labels (i.e., segmented images) in
order to learn to make pixel-level predictions. A notable exception in EO research
is Wang et al. (2020b), where U-Net models are trained from scene-level labels
without requiring pixel-level annotations.

With S2P models, both scene- and patch-level predictions can be made whilst only
requiring scene-level labels for training. This is achieved by reframing pixel-level
segmentation as scene-level regression, where the objective is to predict the coverage
proportion of each segmentation class. The motivation for such an approach is that
scene-level labels are easy to procure (as they are summaries of the content of an image
as opposed to detailed pixel-level annotations), which helps expedite the labelling
process. Furthermore, it also reduces the likelihood of label errors, which often occur in
EO segmentation datasets (Rakhlin et al., 2018). However, scene-level predictions
cannot be used for segmentation. Therefore, it is necessary to have a model that learns
from scene-level labels but can produce patch- or pixel-level predictions — we do so by
proposing inherently interpretable MIL models. We provide a high-level overview of
our S2P approach in Figure 5.1 and discuss our model architecture in more detail in the
next section.

5.3.2 Single Resolution Scene-to-Patch Approach

The core S2P approach is based on mi-Net (Instance; Wang et al., 2018). This operates
on a single input and output resolution, so in the remainder of this work, we call these
Single Resolution (SR) models. In Figure 5.2, we give an example S2P SR architecture
for the DeepGlobe dataset (Section 5.4.1), which has seven classes. The model takes a
bag containing b instance patches as input, where each patch has three channels (red,
green, and blue) and is 102 x 102 px.1 The patches are independently passed through a

1Note the number of patches b for S2P is equivalent to the number of instances k in general MIL.
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FIGURE 5.1: MIL S2P overview. The model produces both instance (patch) and bag
(scene) predictions but only learns from scene-level labels. Example from the Deep-
Globe dataset (Section 5.4.1).

Feature Extractor (FE), resulting in b patch embeddings; each of length 128. These patch
embeddings are then classified, and the mean of the patch predictions is used as the
overall bag prediction.

As predictions are made for each patch as a by-product of making the overall
scene-level prediction (i.e., as a form of inherent interpretability), segmentation outputs
are produced without the need for a post-hoc process. In contrast, if the comparable
Embedding approach was used, no patch-level predictions are made, meaning the
model does not inherently produce segmentation outputs. As the scene-level
predictions are derived directly from the patch-level predictions, the model must learn
the differences between patches, and as such produces robust patch-level
segmentations. Note these models are trained end-to-end and only learn from
scene-level (bag) labels — no patch-level labels are used during training. While patch-
or pixel-level labels may be provided for certain datasets in the form of segmentation
maps, in this work we explore only learning from scene-level labels but still producing
segmentation outputs (primarily because scene-level labels are faster to produce than
patch- or pixel-level labels).

Formally, each EO image X has a corresponding scene-level label Y. Each label is a
C-dimensional vector Y ∈ RC, where C is the number of classes in a given dataset. Each
element in Y represents the coverage proportion (a value between 0 and 1) for a
different class, i.e., Y = {Y0, . . . , YC−1} such that ∑C−1

c=0 Yc = 1. A set of b patches
{x1, . . . , xb} is extracted for each image X. The S2P approach makes a prediction for
each patch, resulting in patch-level predictions {ŷ1, . . . , ŷb}. The mean of these patch
predictions is then taken to make an overall scene-level prediction Ŷ = 1

b ∑b
j=1 ŷj.
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FIGURE 5.2: S2P SR model architecture. Note that some fully connected (FC) layers
use ReLU and Dropout (denoted with *) while some do not, and b denotes bag size
(number of patches).

The configuration of our S2P model shown in Figure 5.2 uses three convolutional layers
in the FE model, but we also experiment with only using two convolution layers (see
Appendix B.2 for further details). The S2P models are relatively small (in comparison to
baseline architectures such as ResNet18 and U-Net; see Section 5.4.2), which means they
are less expensive to train and run. This reduces the GHG emission effect of model
development and deployment, which is an increasingly important consideration for the
use of ML (Kaack et al., 2022). Furthermore, the S2P approach makes patch predictions
inherently — post-hoc interpretability methods such as MIL local interpretations (Early
et al., 2022c, Chapter 4) are not required.

Reframing EO segmentation as a regression problem does not necessitate a MIL
approach; it can be treated as a traditional supervised regression problem. However, as
EO images are often very high resolution, the images would have to be downsampled,
and, as such, important data would be lost. With MIL, it is possible to operate at higher
resolutions than a purely supervised learning approach. With these SR models, it is
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possible to change the resolution at which the model is operating, but the model cannot
incorporate multiple resolutions. In the next section, we discuss our extension to S2P
models which facilitates the use of multiple resolutions within a single model.

5.3.3 Multi-Resolution Scene-to-Patch Approaches

The objective of our S2P extension is to utilise multiple resolutions within a single
model. While separate SR models can be used with different resolutions, this does not
allow information to be shared between the resolutions, which may hinder performance.
For example, in aerial imagery, larger features such as a house might be easy to classify
at lower resolutions (when the entire house fits in a single patch), but higher resolutions
might be required to separate similar classes, such as the difference between trees and
grass. Furthermore, a multi-resolution approach incorporates some notion of spatial
relationships, helping to reduce the noise in high-resolution predictions (e.g., when a
patch prediction is different to its neighbours). Combining multiple resolutions into a
single model facilitates stronger performance and multi-resolution prediction (which
aids interpretability) without the need to train separate models for different resolutions.

Several existing works have investigated multi-resolution MIL models, which we use as
inspiration for our multi-resolution S2P models. Most notably, we base our approach on
Multi-Scale Domain-Adversarial MIL (MS-DA-MIL; Hashimoto et al., 2020) and Dual
Stream MIL (DSMIL; Li et al., 2021a). MS-DA-MIL uses a two-stage approach, where
the latter stage operates at multiple resolutions and makes a combined overall
prediction. DSMIL also uses a two-stage approach and provides a unique approach to
combining feature embeddings extracted at different resolutions. Our novel method
differs from these approaches in that it only uses a single stage of training. We extract
patches at different resolutions and transform these patches into embeddings at each
resolution using separate Feature Extractors (FEs), i.e., distinct convolutional layers for
each resolution. In comparison to using a single FE for all resolutions, as done by
Marini et al. (2021), this allows better extraction of features specific to each resolution.
We propose two different approaches for classification:

1. Multi-Resolution Single-Out (MRSO) — This model uses multiple resolutions as
input, but only makes predictions at the highest resolution. However, this
high-resolution output uses information from all the input resolutions in its
decision-making process.

2. Multi-Resolution Multi-Out (MRMO) — This model uses multiple-resolution
inputs and makes predictions at multiple resolutions. Given sninput resolutions, it
makes sn + 1 sets of predictions: one independent set for each input resolution,
and one main set, utilising information from all input resolutions (as in the MRSO
model).
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We give an example of the MRSO/MRMO models in Figure 5.3. Here, we utilise sn = 3
input resolutions: s = 0, s = 1, and s = 2, where each resolution is twice that of the
previous. For MRMO, the individual resolution predictions are made independently
(i.e., not sharing information between the different resolutions), but the main prediction,
s = m, utilises information from all input resolutions to make predictions at the s = 2
scale. During MRMO training, we optimise the model to minimise the Root Mean
Square Error (RMSE) averaged over all four outputs, aiming to achieve strong
performance at each independent resolution as well as the combined resolution. MRSO
does not make independent predictions at each scale, only the main s = m predictions,
meaning it can be trained using standard RMSE. In the next section, we discuss how we
combine information across different resolutions for MRSO and MRMO.

5.3.4 Multi-Resolution Multiple Instance Learning Concatenation

In our multi-resolution models MRSO and MRMO, we combine information between
different input resolutions to make more accurate predictions. To do so, we use an
approach similar to Li et al. (2021a) and partly inspired by Lazebnik et al. (2006). A
fundamental part of our approach is how patches are extracted at different resolutions:
we alter the grid size, doubling it at each increasing resolution. This means a single
patch of size p x p px at resolution s = 0 is represented with four patches at resolution
s = 1, each also of size p x p px. As such, the same area is represented at twice the
original resolution, i.e., 2p x 2p px at s = 1 compared to p x p px at s = 0. Extending this
to s = 2 follows the same process, resulting in 16 patches for each patch at s = 0, i.e., at
four times the original resolution (4p x 4p px). This process is visually represented on
the left of Figure 5.4. As such, given a bag of size b at s = 0, the equivalent bags at s = 1
and s = 2 are of size 4b and 16b respectively, as shown in Figure 5.3.

Given this multi-resolution patch extraction process, we then need to combine
information across the different resolutions. We do so by using independent FEs (one
per resolution, see Figure 5.3), which give a set of patch embeddings, one per patch, for
each resolution. Therefore, we will have b embeddings at scale s = 0, 4b embeddings at
s = 1, and 16b embeddings at s = 2. To combine these embeddings, we repeat the s = 0
and s = 1 embeddings to match the number of embeddings at s = 2 (16 repeats per
embedding for s = 0 and 4 repeats per embedding for s = 1). This repetition preserves
spatial relationships, such that the embeddings for lower resolutions (s = 0 and s = 1)
cover the same image regions as captured by the higher resolution s = 2 embeddings.
Given the repeated embeddings, it is now possible to concatenate the embeddings from
different resolutions, resulting in an extended embedding for each s = 2 embedding
that includes information from s = 0 and s = 1. Note the embeddings extracted at each
resolution are the same size (l = 128), so the concatenated embeddings are three times
as long (3l = 384). This process is summarised in Figure 5.4.
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FIGURE 5.3: S2P multi-resolution architecture. The embedding process uses indepen-
dent FEs (CNN layers, see Figure 5.2), allowing specialised feature extraction for each
resolution. The MRMO configuration produces predictions at s = 0, s = 1, s = 2,
and s = m resolutions (indicated by the dashed box); MRSO only produces s = m
predictions.

5.4 Experiments

In this section, we detail our experiments, first describing the datasets (Section 5.4.1),
models (Section 5.4.2), and training procedure (Section 5.4.3). We then provide our
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s = 0

s = 1

s = 2
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FIGURE 5.4: Multi-resolution patch extraction and concatenation.
Left: Patches are extracted at different resolutions, where each patch at scale s = 0 has
four corresponding s = 1 patches and 16 corresponding s = 2 patches.
Right: The s = 0 and s = 1 embeddings are repeated to match the number of s = 2
embeddings, and then concatenated to create multi-resolution embeddings.

results (Section 5.4.4).

5.4.1 Datasets

We conduct experiments on two datasets: DeepGlobe (Demir et al., 2018) and FloodNet
(Rahnemoonfar et al., 2021). Both datasets are described in detail below.

5.4.1.1 DeepGlobe

The DeepGlobe-LCC dataset (Demir et al., 2018) consists of 803 satellite images with
three channels (red, green, and blue). Each image is 2448 x 2448 pixels with a 50cm pixel
resolution. All images were sourced from the WorldView3 satellite covering regions in
Thailand, Indonesia, and India. There are also validation and test splits with 171 and
172 images respectively, but as these splits did not include annotation masks, they were
not used in this work. The DeepGlobe-LCC dataset is openly available and can be
acquired from Kaggle.2 Below we give further details on the dataset, which are adapted
from the Kaggle page.

Each satellite image is paired with a mask image for land cover annotation. Each mask
is an image with 7 classes of labels, using colour-coding (RGB) described below. We also
give an overview of the class distribution in Figure 5.5.

2https://www.kaggle.com/datasets/balraj98/deepglobe-land-cover-classification-dataset

https://www.kaggle.com/datasets/balraj98/deepglobe-land-cover-classification-dataset
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0. Urban land (0, 255, 255) — Man-made, built-up areas with human artefacts
(ignoring roads which are hard to label).

1. Agriculture land (255, 255, 0) — Farms, any planned (i.e., regular) plantation,
cropland, orchards, vineyards, nurseries, and ornamental horticultural areas.

2. Rangeland (255, 0, 255) — Any non-forest, non-farm, green land, grass.

3. Forest land (0, 255, 0) — Any land with x% tree crown density plus clearcuts.

4. Water (0, 0, 255) — Rivers, oceans, lakes, wetland, ponds.

5. Barren land (255, 255, 255) — Mountain, land, rock, desert, beach, no vegetation.

6. Unknown (0, 0, 0) — Clouds and others.

FIGURE 5.5: DeepGlobe Class Distribution. We compute the class coverage for each
image in the dataset, then plot a log histogram with 25 bins.

While the DeepGlobe-LCC dataset provides pixel-level annotations, these segmentation
labels are only used to generate the regression targets for training and for the evaluation
of derived patch segmentation, i.e., they are not used during training. However, we
would like to stress that these segmentation labels are not strictly required for our
approach, i.e., the scene-level regression targets can be created without having to
perform segmentation.

We used 5-fold cross-validation rather than the standard 10-fold due to the limited size
of the datasets (only 803 images). With this configuration, each fold had an 80/10/10
split for train/validation/test. We normalised the images by the dataset mean (0.4082,
0.3791, 0.2816) and standard deviation (0.06722, 0.04668, 0.04768). No other data
augmentation was used.

5.4.1.2 FloodNet

To assess our S2P approach on EO data captured with aerial imagery, we use the
FloodNet dataset (Rahnemoonfar et al., 2021). This dataset was originally used as a
competition dataset as part of EARTHVISION 2021. It was created by Bina Lab (a
computer vision and RS laboratory at the University of Maryland, Baltimore County).
This work used the openly available data provided on GitHub.3

3https://github.com/BinaLab/FloodNet-Supervised_v1.0

https://github.com/BinaLab/FloodNet-Supervised_v1.0
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FloodNet consists of 2343 high-resolution (4000 x 3000 px) images of Ford Bend County
in Texas, captured between August 30th and September 4th 2017 after Hurricane Harvey.
Images have three channels (red, green, and blue), and were taken with DJI Mavic Pro
quadcopters at 200 feet above ground level (flown by emergency responders as part of
the disaster response process). The aim is to capture the post-disaster effects, notably
flooding.

Each aerial image is paired with a mask image. Each mask is a single-channel image
with 10 classes of labels, where pixel values from 0 to 9 indicate the pixel class
(described below). We also give an overview of the class distribution in Figure 5.6.

0. Background — Regions that do not fall into any of the other classes.

1. Building Flooded — Man-made structures where at least one side is touching
flood water.

2. Building Non-flooded — Man-made structures where no sides are touching flood
water.

3. Road Flooded — Roads covered by flood water.

4. Road Non-flooded — Roads not covered by flood water.

5. Water — Natural water bodies (e.g., rivers and lakes); considered distinct from
flood water.

6. Tree — Vegetation including trees and bushes.

7. Vehicle — Car, lorries, trucks, etc.

8. Pool — Man-made swimming pools, typically behind houses.

9. Grass — Areas covered with grass.

FIGURE 5.6: FloodNet Class Distribution. We compute the class coverage for each
image in the dataset, then plot a log histogram with 25 bins.

Similar to the DeepGlobe dataset, FloodNet provides pixel-level annotations, but these
segmentation labels are only used to generate the regression targets for our training and
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for the evaluation of derived patch segmentation, i.e., they are not used during training.
The dataset provides fixed train/validation/test splits, so we used these in our work
(i.e., no cross-validation; instead five repeats on the same dataset splits). With this
configuration, there were 1445/450/448 images (2343 total; ∼ 61.7/19.2/19.1) for
train/validation/test. We normalised the images by the dataset mean (0.4111, 0.4483,
0.3415) and standard deviation (0.1260, 0.1185, 0.1177). No other data augmentation was
used.

5.4.2 Model Configurations

To apply MIL at different resolutions, we alter the grid size applied over the image (i.e.,
the number of extracted patches). For the DeepGlobe dataset (square images), we used
three grid sizes: 8 x 8, 16 x 16, and 32 x 32. For the FloodNet dataset (non-square
images), we used 8 x 6, 16 x 12, and 32 x 24. These grid sizes are chosen such that they
can be used directly for three different resolutions in the multi-resolution models, e.g.,
32 x 32 (s = 2) is twice the resolution of 16 x 16 (s = 1), which is twice the resolution of 8
x 8 (s = 0).

We also compare our MIL S2P models to a fine-tuned ResNet18 model (He et al., 2016),
and two U-Net variations operating on different image sizes (224 x 224 px and 448 x 448
px). These baseline models are trained in the same manner as the S2P models, i.e., using
scene-level regression. Although the ResNet model does not produce patch- or
pixel-level predictions, we use it as a scene-level baseline as many existing LCC
approaches utilise ResNet architectures (Hoeser and Kuenzer, 2020; Hoeser et al., 2020;
Rahnemoonfar et al., 2021). For the U-Net models, we follow the same procedure as
Wang et al. (2020b) and use class activation maps to recover segmentation outputs. This
means U-Net is a stronger baseline than ResNet as it can be used for both scene- and
pixel-level prediction. In total, we used 14 different model configurations: one ResNet18
fully supervised approach, two U-Net models, and 11 different configurations of our
S2P approach (nine SR and two multi-resolution). Further details are given below, along
with summaries in Tables 5.1 and 5.2 for DeepGlobe and FloodNet respectively.

ResNet18 For the ResNet18 model, we treat our regression problem in a fully
supervised manner, i.e., without using a MIL approach. Instead, the entire image is
resized to 224 x 224 px (the size that ResNet18 expects), and the model makes (only) a
scene-level prediction. Conceptually, this is equivalent to using a grid size of one and a
patch size of 224 x 224 px (see Tables 5.1 and 5.2). We used a pre-trained ResNet18
model, with weights sourced from TorchVision.4 We replaced the final classifier layer of
the network with a new linear layer of the correct size (7 for DeepGlobe and 10 for

4https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet18.html#

torchvision.models.resnet18

https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet18.html#torchvision.models.resnet18
https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet18.html#torchvision.models.resnet18
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FloodNet) and then re-trained the entire network, i.e., no weights were frozen during
re-training.

U-Net Models We used two different U-Net configurations — one using entire image
inputs resized to 224 x 224 px, and the other 448 x 448 px. The model makes scene-level
predictions using Global Average Pooling (GAP) over zConv (the output of the U-Net’s
final convolutional layer) followed by a single classification layer L. Using Class
Activation Mapping (CAM), it is possible to recover pixel-level segmentation outputs:
Mc = WczConv + Bc, where Mc is the class activation map for class c, Wc is the weights
in L for class c, and Bc is the bias in L for class c. Note, for the U-Net upsampling
process, we experimented with fixed bilinear or learnt convolutional upsampling; the
latter increases the number of model parameters. This was included as a
hyperparameter during tuning on the DeepGlobe dataset, and it was found that fixed
upsampling was best for the U-Net 224 architecture, but learnt upsampling was best for
U-Net 448 architecture, leading to an increase in the number of parameters for the
U-Net 448 model.

Single Resolution S2P Models We tested nine different configurations of our SR S2P
models. Two parameters were changed: the grid size and the patch size. The grid size
determines the number of cells extracted from the original image. The patch size is the
dimension that each extracted cell is resized to before being input to the model and also
determines the model architecture that is used, i.e., we used three different patch sizes
and thus designed three different model architectures. This means models with
different grid sizes but the same patch size used the same architecture, e.g., the S2P
Large 8, S2P Large 16, and S2P Large 32 models all used the same model architecture
(hence having the same number of model parameters in Tables 5.1 and 5.2).

Multi-Resolution S2P Models We used two different configurations of the
multi-resolution models, see Section 5.3.3. These models use the large SR architecture as
their backbone (as this was found to be most effective for S2P SR models, see
Section 5.5.3). Both multi-resolution models make predictions at the same resolution as
the grid size = 32 SR models (s = m), and the MRMO model also makes independent
predictions at grid sizes 8, 16, and 32.

Despite using larger patches, the S2P Large architectures have fewer parameters than
the S2P Medium architectures as they use an additional convolutional and pooling
layer, leading to smaller embedding sizes and thus fewer parameters in the fully
connected layers (see Appendix B.2 for further details on the model architectures).
Furthermore, while the DeepGlobe multi-resolution MIL models are larger (more
parameters) than the DeepGlobe SR MIL models, the DeepGlobe multi-resolution
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TABLE 5.1: DeepGlobe model configurations. The grid size determines the number
of cells and the size of each cell. Each cell is then resized (patch size), leading to a
reduction in the overall image size (effective resolution and scale). # Params is the
number of parameters in each model. Note, when using a grid size of 32, a patch
size of 102 x 102 px is greater than the maximum possible cell size (i.e., the extracted
cells would need to be upsampled and the effective resolution would be greater than
100%). Therefore, for grid size 32, we use a patch size of 76 x 76 px for the large model
configurations.

Configuration Grid Size Cell Size Patch Size Eff. Resolution Scale # Params

ResNet18 1 x 1 2448 x 2448 px 224 x 224 px 224 x 224 px 0.8% 11.18M
U-Net 224 1 x 1 2448 x 2448 px 224 x 224 px 224 x 224 px 0.8% 4.31M
U-Net 448 1 x 1 2448 x 2448 px 448 x 448 px 448 x 448 px 3.3% 7.76M

S2P SR Small 8 8 x 8 306 x 306 px 28 x 28 px 224 x 224 px 0.8% 707K
S2P SR Medium 8 8 x 8 306 x 306 px 56 x 56 px 448 x 448 px 3.3% 3.63M
S2P SR Large 8 8 x 8 306 x 306 px 102 x 102 px 816 x 816 px 11.1% 2.98M

S2P SR Small 16 16 x 16 153 x 153 px 28 x 28 px 448 x 448 px 3.3% 707K
S2P SR Medium 16 16 x 16 153 x 153 px 56 x 56 px 896 x 896 px 13.4% 3.63M
S2P SR Large 16 16 x 16 153 x 153 px 102 x 102 px 1632 x 1632 px 44.4% 2.98M

S2P SR Small 32 32 x 32 76 x 76 px 28 x 28 px 896 x 896 px 13.4% 707K
S2P SR Medium 32 32 x 32 76 x 76 px 56 x 56 px 1792 x 1792 px 53.6% 3.63M
S2P SR Large 32 32 x 32 76 x 76 px 76 x 76 px 2432 x 2432 px 98.7% 1.52M

s = 0 8 x 8 306 x 306 px 76 x 76 px 608 x 608 px 6.2%
S2P MRSO s = 1 16 x 16 153 x 153 px 76 x 76 px 1216 x 1216 px 24.7% 4.56M

s = 2 32 x 32 76 x 76 px 76 x 76 px 2432 x 2432 px 98.7%

s = 0 8 x 8 306 x 306 px 76 x 76 px 608 x 608 px 6.2%
S2P MRMO s = 1 16 x 16 153 x 153 px 76 x 76 px 1216 x 1216 px 24.7% 4.59M

s = 2 32 x 32 76 x 76 px 76 x 76 px 2432 x 2432 px 98.7%

models have fewer parameters than the total number of parameters for the equivalent
SR models (a total of 7.48M parameters). This is because the DeepGlobe
multi-resolution models use a patch size of 76 x 76 px rather than 102 x 102 px. For the
FloodNet multi-resolution models, as the patch size is the same as the SR models, the
number of parameters is only slightly higher than the equivalent total for the SR models
(a total of 8.94M parameters). The implication of having fewer parameters (in the case
of DeepGlobe), or only slightly more (in the case of FloodNet) is that using a single
MRMO model is mostly equivalent to training three separate SR models, with the
added benefit of improved performance and faster training.

5.4.3 Training Procedure

Models were trained to minimise scene-level RMSE using the Adam optimiser. We
utilised early stopping based on validation performance — if the validation RMSE had
not decreased for 5 epochs (or the epoch limit was reached, which very rarely
happened), we terminated the training procedure and reset the model to the point at
which it caused the last decrease in validation loss. Hyperparameter tuning was only
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TABLE 5.2: FloodNet model configurations.

Configuration Grid Size Cell Size Patch Size Eff. Resolution Scale # Params

ResNet18 1 x 1 4000 x 3000 px 224 x 224 px 224 x 224 px 0.4% 11.18M
U-Net 224 1 x 1 4000 x 3000 px 224 x 224 px 224 x 224 px 0.4% 4.31M
U-Net 448 1 x 1 4000 x 3000 px 448 x 448 px 448 x 448 px 1.7% 7.76M

S2P SR Small 8 8 x 6 500 x 500 px 28 x 28 px 224 x 168 px 0.3% 707K
S2P SR Medium 8 8 x 6 500 x 500 px 56 x 56 px 448 x 336 px 1.3% 3.63M
S2P SR Large 8 8 x 6 500 x 500 px 102 x 102 px 816 x 612 px 4.2% 2.98M

S2P SR Small 16 16 x 12 250 x 250 px 28 x 28 px 448 x 336 px 1.3% 707K
S2P SR Medium 16 16 x 12 250 x 250 px 56 x 56 px 896 x 672 px 5.0% 3.63M
S2P SR Large 16 16 x 12 250 x 250 px 102 x 102 px 1632 x 1224 px 16.6% 2.98M

S2P SR Small 32 32 x 24 125 x 125 px 28 x 28 px 896 x 672 px 5.0% 707K
S2P SR Medium 32 32 x 24 125 x 125 px 56 x 56 px 1792 x 1344 px 20.1% 3.63M
S2P SR Large 32 32 x 24 125 x 125 px 102 x 102 px 3264 x 2448 px 66.6% 2.98M

s = 0 8 x 6 500 x 500 px 102 x 102 px 816 x 612 px 4.2%
S2P MRSO s = 1 16 x 12 250 x 250 px 102 x 102 px 1632 x 1224 px 16.6% 8.95M

s = 2 32 x 24 125 x 125 px 102 x 102 px 3264 x 2448 px 66.6%

s = 0 8 x 6 500 x 500 px 102 x 102 px 816 x 612 px 4.2%
S2P MRMO s = 1 16 x 12 250 x 250 px 102 x 102 px 1632 x 1224 px 16.6% 8.98M

s = 2 32 x 24 125 x 125 px 102 x 102 px 3264 x 2448 px 66.6%

carried out on the DeepGlobe dataset, i.e., the same hyperparameters were used for the
FloodNet models. This demonstrates that the hyperparameters found through tuning
are robust, which is also supported by consistent values across the S2P models. For
more details on the implementation, model architectures, and training hyperparameters
see Appendices B.1 to B.3.

5.4.4 Results

We evaluate performance on both datasets using four metrics, covering scene-, patch-,
and pixel-level prediction. Scene-level performance is scored using RMSE and Mean
Absolute Error (MAE), where lower values are better. Both of these metrics compare the
scene-level (bag) predictions with the true scene-level coverage labels. For patch-level
predictions, we report the patch-level Mean Intersection Over Union (MIOU)
(Everingham et al., 2010; Minaee et al., 2021), where larger values are better.5 Patch
labels (only used during evaluation; not during training) are derived from the true
segmentation masks, where the labels are the class that has maximum coverage in each
patch. For pixel-level prediction, we compute pixel-level MIOU using the original
ground-truth segmentation masks.6 For S2P models, this is achieved by resizing the
patch-level segmentation output to the same size as the ground-truth segmentation

5Patch-level evaluation is only applicable for our S2P models as the ResNet18 and U-Net approaches do
not use patches.

6Pixel-level evaluation is not possible for the ResNet18 baseline as it does not produce any segmentation
output.
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mask. Pixel-level MIOU is the primary metric for evaluation as it best determines the
ability of the models to segment the input images — patch-level evaluation is
dependent on the grid size so is not a consistent metric across different resolutions (but
can be useful to compare patch-level predictions at the same resolution). Strong models
should perform well at both scene- and pixel-level prediction, i.e., low scene RMSE, low
scene MAE, and high pixel MIOU.

Our results are given in Tables 5.3 and 5.4 for DeepGlobe and FloodNet respectively. We
compare the three non-MIL baselines7 (ResNet18, U-Net 224, and U-Net 448) with S2P
SR models operating at three different scales (s = 0, s = 1, and s = 2), the S2P MRSO
approach, and the S2P MRMO approach (evaluating the MRMO outputs at all scales).
Our first observation is that, for both datasets, all of our S2P models outperform the
baseline approaches at both scene- and pixel-level prediction, showing the efficacy of
our S2P approach. We also find that, out of all the methods, the MRMO approach
achieves the best performance when using its combined s = m output, demonstrating
the performance gain of using multiple resolutions. Note the MRMO s = m
performance is better than the MRSO s = m performance, suggesting that optimising
the model for independent scale predictions (s = 0, s = 1, and s = 2) as well as the
combined output (s = m) is beneficial for learning — the multi-output nature
potentially leads to better representation learning at each individual scale and could
help avoid overfitting. However, the MRSO model still outperforms its SR equivalent
(S2P SR s = 2), again demonstrating the efficacy of using multiple resolutions.

TABLE 5.3: DeepGlobe results. We give the mean performance averaged over five
repeat training runs, with bounds using the standard error of the mean. The best
performance for each metric is indicated in bold and underlined.

Model Scene RMSE Scene MAE Patch MIOU Pixel MIOU

ResNet18 0.218 ± 0.008 0.128 ± 0.004 N/A N/A
U-Net 224 0.136 ± 0.008 0.075 ± 0.004 N/A 0.245 ± 0.008
U-Net 448 0.134 ± 0.008 0.076 ± 0.004 N/A 0.272 ± 0.008

S2P SR s = 0 0.090 ± 0.005 0.047 ± 0.002 0.439 ± 0.014 0.397 ± 0.014
S2P SR s = 1 0.097 ± 0.003 0.051 ± 0.001 0.404 ± 0.016 0.384 ± 0.014
S2P SR s = 2 0.104 ± 0.008 0.055 ± 0.004 0.353 ± 0.018 0.345 ± 0.018

S2P MRSO s = m 0.093 ± 0.004 0.051 ± 0.002 0.394 ± 0.014 0.388 ± 0.014

S2P MRMO s = 0 0.087 ± 0.003 0.048 ± 0.001 0.432 ± 0.012 0.389 ± 0.013
S2P MRMO s = 1 0.087 ± 0.004 0.046 ± 0.002 0.412 ± 0.010 0.391 ± 0.010
S2P MRMO s = 2 0.095 ± 0.004 0.050 ± 0.002 0.370 ± 0.011 0.362 ± 0.011
S2P MRMO s = m 0.084 ± 0.004 0.045 ± 0.002 0.425 ± 0.013 0.417 ± 0.013

7The original works reported baseline pixel MIOU scores of 0.43 for DeepGlobe and 0.43 to 0.80 for
FloodNet. However, those baselines are trained against segmentation maps rather than coverage labels, so
are expected to perform better.
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TABLE 5.4: FloodNet results. We give the mean performance averaged over five repeat
training runs, with bounds using the standard error of the mean. The best performance
for each metric is indicated in bold and underlined.

Model Scene RMSE Scene MAE Patch MIOU Pixel MIOU

ResNet18 0.145 ± 0.001 0.077 ± 0.002 N/A N/A
U-Net 224 0.083 ± 0.001 0.039 ± 0.001 N/A 0.193 ± 0.003
U-Net 448 0.080 ± 0.002 0.037 ± 0.002 N/A 0.206 ± 0.004

S2P SR s = 0 0.070 ± 0.001 0.028 ± 0.000 0.273 ± 0.002 0.233 ± 0.002
S2P SR s = 1 0.073 ± 0.000 0.030 ± 0.001 0.269 ± 0.002 0.248 ± 0.002
S2P SR s = 2 0.072 ± 0.001 0.030 ± 0.001 0.263 ± 0.003 0.251 ± 0.003

S2P MRSO s = m 0.070 ± 0.001 0.029 ± 0.000 0.273 ± 0.004 0.264 ± 0.004

S2P MRMO s = 0 0.070 ± 0.001 0.029 ± 0.000 0.273 ± 0.003 0.234 ± 0.002
S2P MRMO s = 1 0.070 ± 0.001 0.029 ± 0.000 0.277 ± 0.002 0.256 ± 0.001
S2P MRMO s = 2 0.070 ± 0.000 0.030 ± 0.000 0.272 ± 0.001 0.260 ± 0.001
S2P MRMO s = m 0.069 ± 0.001 0.028 ± 0.000 0.279 ± 0.002 0.271 ± 0.002

To compare the change in performance caused by using different/multiple resolutions,
we visualise our S2P results in Figure 5.7. For the DeepGlobe dataset, when using SR
models, we observe that increasing the resolution leads to worse performance (greater
scene RMSE and MAE, and lower pixel MIOU) — a trade-off between performance and
segmentation resolution. However, with the extension to multi-resolution models, it is
possible to achieve strong performance whilst operating at higher resolutions,
overcoming this trade-off. For the FloodNet dataset, we observe the opposite trend for
pixel MIOU — increasing resolution leads to better segmentation performance, even for
the SR models. This is likely explained by the different spatial modalities of the two
datasets: DeepGlobe images cover much larger spatial areas (e.g., entire towns and
fields in a single image) compared to FloodNet (e.g., a handful of buildings or a single
road per image). As such, the FloodNet segmentation masks identify individual objects
(e.g., a single tree), which require high-resolution inputs and outputs to correctly
separate (as opposed to broadly segmenting a forest region as in DeepGlobe). However,
we still observe that utilising multiple resolutions gives better performance for
FloodNet. We also find that the MRMO independent resolution predictions (s = 0,
s = 1, and s = 2) typically outperform the equivalent SR model predictions.

5.5 Discussion

In this section, we further discuss our findings. First, we analyse the model predictions
in more detail (Section 5.5.1), then investigate the interpretability and segmentation
outputs of the models (Section 5.5.2). Next, we conduct an ablation study into model
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FIGURE 5.7: S2P resolution comparison. We compare model performance for Scene
RMSE (left), Scene MAE (middle), and Pixel MIOU (right) for both DeepGlobe (top)
and FloodNet (bottom).

architectures (Section 5.5.3). Finally, we discuss the limitations of this study and outline
areas for future work (Section 5.5.4).

5.5.1 Model Analysis

We conduct an additional study to further analyse and compare the effectiveness of the
different approaches. We use confusion matrices along with precision and recall
analysis to investigate the performance of the models on particular classes. The results
for the DeepGlobe dataset are presented in Figure 5.8. We observe that all of the
analysed models perform best on the agricultural, urban, and forest classes, but struggle
on rangeland and unknown classes. For the MRMO s = m model (the best-performing
approach) rangeland is most often predicted as agricultural, and unknown is most often
predicted as water or agricultural. Rangeland is defined as any green land or grass that
is not forest or farmland, so is often difficult to separate from agricultural land. The
unknown class is very underrepresented in the dataset compared to the other classes
(see Section 5.4.1.1). We note that the MRMO s = m model also achieves the best
macro-averaged precision and recall.

In a similar study for FloodNet (Figure 5.9), the models perform best at identifying the
road non-flooded, water, tree, and grass classes, but struggle on the background,
vehicle, and pool classes. The vehicle and pool classes represent relatively small objects
(compared to buildings and roads) and are also very underrepresented (see
Section 5.4.1.2), making them hard to identify. However, they are most often classified
as building non-flooded, which is an appropriate alternative prediction (i.e., better than
classifying them as natural objects such as trees). The background category is a catch-all
for any regions that do not belong to the other classes, but it often contains elements of
the other classes, making it difficult to segment. Again, we find that the MRMO s = m
model has the best precision and recall performance.
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FIGURE 5.8: DeepGlobe model analysis.
Top: Row normalised confusion matrices.
Bottom: Classwise precision and recall, where the dotted line indicates the macro-
averaged performance (which is also denoted in the top right corner of each plot).

FIGURE 5.9: FloodNet model analysis.
Top: Row normalised confusion matrices.
Bottom: Classwise precision and recall, where the dotted line indicates the macro-
averaged performance (which is also denoted in the top left corner of each plot).

5.5.2 Model Interpretability

As our S2P models inherently produce patch-level predictions, we can directly interpret
their segmentation outputs. In Figure 5.10, we do so for the MRMO model on the
FloodNet dataset. We observe that the model can accurately separate the non-flooded
building and road, and also identifies the grass and trees. Furthermore, we find the
s = m predictions are an improvement over the independent predictions, notably that



5.5. Discussion 99

the s = m output is less noisy than the s = 2 predictions. We also note that the model is
also to support and refute different classes, which further aids interpretability.

FIGURE 5.10: MRMO interpretability example.
Top (from left to right): the original dataset image; the true pixel-level mask; the
true patch-level mask at resolution s = 2; the predicted mask from the MRMO model
overlaid on the original image.
Middle: Predicted masks for each of the MRMO outputs.
Bottom: MRMO s = m predicted masks for each class, showing supporting (+ve) and
refuting regions (-ve).

5.5.3 Ablation Study: Single Resolution Configurations

Changing the patch size (the dimensions to which each cell from the grid extraction
process is resized) influences the effective resolution (i.e., the level of downsampling) at
which the S2P models are operating and also impacts the MIL model architectures. We
conducted an ablation study using three different patch sizes (small, medium, and
large). This was done for each of three resolutions s = 0, s = 1, and s = 2, resulting in
nine different S2P SR configurations (see Section 5.4.2). As shown in Figure 5.11, we
find that the large model configuration has the best average performance on all metrics
for both datasets. This matches our intuition that operating at higher resolutions leads
to better performance. Given these results, we used the large configuration as the
backbone of the multi-resolution S2P models, and as the choice of SR model in our main
results (Tables 5.3 and 5.4).
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FIGURE 5.11: SR S2P ablation study. We observe that, on average, the large configura-
tion achieves the best performance (lowest RMSE, lowest MAE, and highest MIOU) on
both datasets. Error bars are given representing the standard error of the mean from
five repeats.

5.5.4 Limitations and Future Work

While our new multi-resolution S2P approach outperforms existing methods, there are
still limitations to the method. For the DeepGlobe dataset, the model struggles to
separate rangeland and agricultural regions, and for the FloodNet dataset, it struggles
to correctly separate flooded regions and identify smaller objects such as pools and
vehicles. These problems mostly stem from dataset imbalance; future work could
investigate dataset balancing or augmentation to overcome such class imbalance. It
could also be beneficial to extend the MIL models to incorporate additional spatial
information — this could help separate small objects from the larger objects they often
appear next to, e.g., swimming pools from houses. Potential alternatives include
utilising positional embeddings (Vaswani et al., 2017), MIL attention (Ilse et al., 2018), or
graph neural networks (Tu et al., 2019).

When considering the application of our work to other datasets, there are two points to
consider. First, while our solution will scale to datasets containing more images of a
similar size to the ones studied in this work, there could be resource issues when using
datasets containing larger images (i.e., images larger than 4000 x 3000 px). The
computational resources required are determined by the image size, the model’s
architecture, and the effective resolution at which the model is operating. Reducing the
model complexity or lowering the image resolution would overcome potential issues.
However, we did not run into any such issues in our work (see Appendix B.1 for details
on our compute resources). Second, in this work, we used datasets with existing
segmentation labels that were converted into scene-level coverage labels. An area for
future work is to investigate how to generate coverage labels for datasets without
segmentation labels. This could also incorporate an analysis of model performance in
the presence of label noise, i.e., imperfect coverage labels.
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Finally, we only tuned training hyperparameters on the DeepGlobe dataset (see
Section 5.4.3 for more details). This was an intentional choice, as it allowed us to
demonstrate that the hyperparameters found through tuning were robust (i.e., useful
default parameters for training on other datasets). However, better performance could
potentially be achieved on FloodNet by tuning the training hyperparameters
specifically for that dataset and optimising the model architectures as well as the
training hyperparameters.

5.6 Conclusion

In this work, we presented a novel method for segmenting EO RS images. Our method
extends our previous SR S2P approach to multiple resolutions, which leads to improved
performance and interpretability. We demonstrated the efficacy of our approach on two
datasets: DeepGlobe (LCC from satellite imagery) and FloodNet (NDR from aerial
imagery). As our S2P approaches do not require segmentation labels, faster and easier
curation of larger and more diverse datasets can be achieved, facilitating the wider use
of ML for climate change mitigation in technology, government, and academia.

This chapter and the previous chapter have broadly focused on interpretable MIL for
computer vision problems. In the next two chapters, we develop methods for
interpretable MIL applied to sequential data. Specifically, in the next chapter we work
on Reward Modelling (RM) for Reinforcement Learning (RL).





103

Part III

Interpretable Multiple Instance
Learning for Sequential Data
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Chapter 6

Non-Markovian Reward Modelling
from Trajectory Labels via
Interpretable Multiple Instance
Learning

This chapter contains work completed for a paper published at the conference on
Neural Information Processing Systems (NeurIPS) 2022, which was an in-person
conference held in New Orleans. The content presented is mostly unchanged from its
original format: elements of the original appendix have been brought into the main
body, certain sections have been slightly reworded, and some terminology/notation has
been modified for consistency with the rest of this thesis. This work was a collaboration
with Tom Bewley, a fellow Turing PhD student studying at the University of Bristol. We
are both considered lead authors with equal contribution to the original work. Tom’s
technical contributions focused on the Reinforcement Learning portion of the work,
while mine focused on the Multiple Instance Learning and Reward Modelling portions.
Both of us contributed equally to writing the manuscript.

Paper

Joseph Early, Tom Bewley, Christine Evers, and Sarvapali Ramchurn. Non-Markovian
reward modelling from trajectory labels via interpretable multiple instance learning.
Advances in Neural Information Processing Systems, 35, 2022a. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/

b157cfde6794e93b2353b9712bbd45a5-Paper-Conference.pdf

GitHub: https://github.com/JAEarly/MIL-for-Non-Markovian-Reward-Modelling

https://proceedings.neurips.cc/paper_files/paper/2022/file/b157cfde6794e93b2353b9712bbd45a5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b157cfde6794e93b2353b9712bbd45a5-Paper-Conference.pdf
https://github.com/JAEarly/MIL-for-Non-Markovian-Reward-Modelling
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6.1 Introduction

There is a growing consensus around the view that aligned and beneficial Artificial
Intelligence (AI) requires a reframing of objectives as being contingent, uncertain, and
learnable via interaction with humans (Russell, 2019). In Reinforcement Learning (RL),
this proposal has found one formalisation in Reward Modelling (RM)1: the inference of
agent objectives from human preference information such as demonstrations, pairwise
choices, approval labels, and corrections (Leike et al., 2018). Prior work in RM typically
assumes that a human evaluates the return (quality) of a sequential trajectory of agent
behaviour by summing equal and independent reward assessments of instantaneous
states and actions, with the aim of RM being to reconstruct the underlying reward
function. However, in reality, the human’s experience of a trajectory is likely to be
temporally extended (e.g., via a video clip (Christiano et al., 2017) or real-time
observation), which opens the door to dependencies between earlier events and the
assessment of later ones. The independence assumption may be both psychologically
unrealistic given human memory limitations (Kahneman, 2000), and technically naı̈ve
given the difficulty of building complete instantaneous state representations (Kaelbling
et al., 1998). We thus seek to generalise RM to allow for temporal dependencies in
human evaluation, by postulating hidden state information that accumulates over a
trajectory. Reconstruction of the human’s preferences now requires the modelling of
hidden state dynamics alongside the reward function itself.

In tackling this generalised problem, we identify a structural isomorphism between RM
(specifically from trajectory return labels) and the established field of Multiple Instance
Learning (MIL) (Carbonneau et al., 2018). Trajectories are recast as bags and constituent
state-action pairs as instances, which collectively contribute to labels provided at the bag
level by interacting in potentially complex ways. This mapping inspires a range of
novel MIL model architectures that use Long Short-Term Memory (LSTM) modules
(Hochreiter and Schmidhuber, 1997) to recover the hidden state dynamics and learn
instance-level reward predictions from return-labelled trajectories of arbitrary length. In
experiments with synthetic oracle labels, we show that our MIL RM models can
accurately reconstruct ground truth hidden states and reward functions for
non-Markovian tasks, and can be straightforwardly integrated into RL agent training to
achieve performance matching, or even exceeding, that of agents with direct access to
true hidden states and rewards. We then apply interpretability analysis to understand
what the models have learnt.

Our contributions are as follows:
1Also known as reinforcement learning from human feedback (RLHF).
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1. We generalise RM to handle non-Markovian rewards that depend on hidden
features of the environment or the psychology of the human evaluator in addition
to visible states/actions.

2. We identify a structural connection between RM and MIL, creating the
opportunity to transfer concepts and methods between the two fields.

3. We propose novel LSTM-based MIL models for this generalised RM problem, and
develop interpretability techniques for understanding and verifying the learnt
reward functions.

4. We compare our proposed models to existing MIL baselines on five
non-Markovian tasks, evaluating return prediction, reward prediction, robustness
to label noise, and interpretability.

5. We demonstrate that the hidden state and reward predictions of our MIL RM
models can be used by RL agents to solve non-Markovian tasks.

The remainder of this work is as follows. Section 6.2 discusses related work in RM and
MIL, and Section 6.3 gives a formal problem definition and describes our MIL-inspired
methodology. Sections 6.4 and 6.5 present experiments and results on toy and advanced
RL problems respectively. We discuss key findings in Section 6.6, and Section 6.7
concludes.

6.2 Background and Related Work

Reward Modelling RM (Leike et al., 2018) aims to infer a reward function from
revealed human preference information such as demonstrations (Ng et al., 2000),
pairwise choices (Christiano et al., 2017), corrections (Bajcsy et al., 2017),
good/bad/neutral labels (Reddy et al., 2020), or combinations thereof (Jeon et al., 2020).
Most prior work assumes a human evaluates a trajectory by summing independent
rewards for each state-action pair, but in practice their experience is likely to be
temporally extended (e.g., via a video clip), creating the opportunity for dependencies
to emerge between earlier events and the assessment of later ones. As noted by Bewley
and Lecue (2022), such dependencies may arise from cognitive biases such as anchoring,
prospect bias, and the peak-end rule (Kahneman, 2000), but they could equally reflect
rational drivers of human preferences not captured by the state representation. Some
efforts have been made to model temporal dependencies, such as a discrete
psychological mode which evolves over consecutive queries about hypothetical
trajectories (Basu et al., 2019), or a monotonic bias towards more recently-viewed
timesteps due to human memory limitations (Lee et al., 2021b). Elsewhere, Shah et al.
(2020) use human demonstrations and binary approval labels to learn temporally
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extended task specifications in logical form. In comparison to these restricted examples,
our work provides a more general approach to capturing temporal dependencies in RM.

Non-Markovian Rewards In the canonical RL problem setup of a Markov decision
process (MDP), rewards depend only on the most recent state-action pair. In a
non-Markovian reward decision process (NMRDP) (Bacchus et al., 1996), rewards
depend on the full preceding trajectory (Bacchus et al., 1996). NMRDPs can be expanded
into MDPs (and thus solved by RL) by augmenting the state with a hidden state that
captures all reward-relevant historical information, but this is typically not known a
priori. Data-driven approaches to learning NMRDP expansions (Icarte et al., 2018) often
make use of domain-specific propositions and temporal logic operators (Bacchus et al.,
1997; Thiebaux et al., 2006; Toro Icarte et al., 2019). Outside of the RM context, recurrent
architectures such as LSTMs have been used in NMRDPs to reduce reliance on
pre-specified propositions (Jarboui and Perchet, 2021). They also have a long history of
use in partially observable MDPs, where dynamics are also non-Markovian (Bakker,
2001; Hausknecht and Stone, 2015; Wierstra et al., 2009).

MIL In MIL (Carbonneau et al., 2018), data is structured into bags of instances, where
a bag X is comprised of instances {x1, . . . , xk} and has an associated bag-level label Y.
The instances also have corresponding instance-level labels {y1, . . . , yk}. The aim is to
construct a model that learns solely from bag labels; instance labels are not available
during training, but may be used later to evaluate instance-level predictions. The
simplest MIL approaches assume that instances are independent and that the bag is
unordered, but models exist for capturing various types of instance dependencies (Ilse
et al., 2018; Tu et al., 2019; Wang et al., 2018). LSTMs have emerged as a natural
architecture for modelling temporal dependencies among ordered bags, where they can
be utilised to aggregate instance information into an overall bag representation. They
have previously been applied to standard MIL benchmarks (Wang et al., 2020a), as well
as specific problems such as Chinese painting image classification (Li and Zhang, 2020).
As we discuss in Section 6.3.3, these existing models are somewhat unsuitable for use in
RM, leading us to propose our own novel model architectures.

6.3 Methodology

In this section, we present the core methodology of our work. We formally define the
new paradigm of non-Markovian RM (Section 6.3.1), and then go on to discuss how we
can use MIL RM models for training RL agents on non-Markovian tasks (Section 6.3.2).
We then draw on existing MIL literature to propose models that can be used to solve
this generalised problem (Section 6.3.3).
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6.3.1 Formal Definition of Non-Markovian Reward Modelling

Consider an agent interacting with an environment with Markovian dynamics. At
discrete time t, the current environment state st ∈ S and agent action at ∈ A condition
the next environment state st+1 according to the dynamics function D : S ×A → ∆S . A
trajectory ξ ∈ Ξ is a sequence of state-action pairs, ξ = ((s0, a0), ..., (sT−1, aT−1)), where
T is the total length of the trajectory. A human’s preferences about agent behaviour
respect a real-valued return function G : Ξ → R. In traditional (Markovian) RM, return
is assumed to decompose into a sum of independent rewards over state-action pairs,
G(ξ) = ∑T−1

t=0 R(st, at), where R is a reward function for individual state-action pairs.
The aim is to reconstruct R′ ≈ R from possibly noisy sources of preference information.
In our generalised non-Markovian model, we consider the human to observe a
trajectory sequentially and allow for the possibility of hidden state information that
accumulates over time and parameterises R:

G(ξ) =
T−1

∑
t=0

R(st, at, ht+1); ht+1 = δ(ht, st, at), (6.1)

where δ is a hidden state dynamics function, and h0 is a fixed value for the initial
hidden state. Reconstruction of the human’s preferences now requires the estimation of
δ′ ≈ δ and h′

0 ≈ h0 alongside R′ ≈ R. We visualise the difference between Markovian
and non-Markovian RM in Figure 6.1.

FIGURE 6.1: In Markovian RM, the human is assumed to sum (+) over indepen-
dent and equal reward assessments for the state-action pairs in a trajectory. In non-
Markovian RM, per-timestep rewards additionally depend on hidden state information
h that accumulates over time.

The hidden state ht may be interpreted as (1) an external feature of the environment
that is detectable by the human but excluded from the state, or (2) a psychological
feature of the person themselves, through which their response to each new observation
is influenced by what they have seen already. The latter framing is more interesting for
our purposes and connects to the psychological literature on human judgement,
memory, and biases (Kahneman, 2000). In practice, hidden state information may
encode the human’s preferences about the order in which a sequence of behaviours
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should be performed, the effect of historic observations on their subjective mood (and in
turn on their reward evaluations), or cognitive biases which corrupt the way they
aggregate instantaneous rewards into trajectory-level feedback. All of these
complications are liable to arise in practical RM applications, but cannot be handled
when the Markovian reward assumption is made.

We note that it is a matter of taste as to whether hidden state information is framed as
situated inside a human evaluator’s mind or in the environment but only visible to the human.
It is not technically necessary to decide between these two framings, as the
mathematical problem of non-Markovian RM is equivalent. From an agent’s
perspective, a human evaluator is part of an augmented environment, even if they
never intervene directly to influence the state. Appendix C.2 elaborates on this
discussion, presenting motivating use cases and limitations of non-Markovian RM.

In this work, we focus on one of the simplest and most explicit forms of preference
information: direct labelling of returns G(ξ i) for a dataset of N trajectories {ξ i}N

i=1. We
aim to solve the reconstruction problem by minimising the squared error in predicted
returns:

argmin
R′,δ′,h′

0

N

∑
i=1

(
G(ξ i)−

Ti−1

∑
t=0

R′(si
t, ai

t, h′i
t+1)

)2

where
h′i

0 = h′
0

h′i
t+1 = δ′(h′i

t , si
t, ai

t)
∀i ∈ {1, . . . , N}.

(6.2)

We observe that Equation 6.2 perfectly matches the definition of a MIL problem. Each
trajectory ξ i can be considered as an ordered bag of instances
((si

0, ai
0), . . . , (si

Ti−1, ai
Ti−1)) with unobserved instance labels R(si

t, ai
t, hi

t+1), an observed
bag label G(ξ i), and temporal instance interactions via the changing hidden state hi

t.
2

To explore this relationship through the lens of MIL terminology: only bag-level labels
are provided (sparse reward in the form of trajectory-level returns), and we want to
create RM models capable of instance (dense reward) prediction while only learning
from bag-level (sparse reward) labels. This is a common objective in general MIL
interpretability, so this correspondence motivates us to explore how MIL can be applied
in RM, and then review the space of existing MIL models (specifically those that model
temporal dependencies among instances).

6.3.2 Training Agents with Non-Markovian Reward Modelling

In this work, as in RM more widely, we are not solely interested in learning reward
functions to represent human preferences, but also in the downstream application of
rewards to train agents’ action-selection policies. After optimising our LSTM-based

2In this case, the trajectory length T is equivalent to the bag size k in general MIL.
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models on offline trajectory datasets (see Section 6.3.3), we deploy them at the interface
between conventional RL agents and their environments. Going beyond prior work,
where a learnt model is used to either generate a reward signal for an agent to maximise
(Christiano et al., 2017) or augment its observed state representation with hidden state
information (Icarte et al., 2018), our models serve a dual role, providing both rewards
and state augmentations. Figure 6.2 describes this setup in detail, and in the next
section we detail the MIL model architectures used.

FIGURE 6.2: During RL agent training, our LSTM MIL models sit at the centre of the
agent-environment loop by which states st and actions at are exchanged. We focus on
episodic tasks, where the environment state periodically resets. The LSTM hidden state
is simultaneously reset to h′

0 at the start of an episode, then is iteratively updated over
time t given the state-action pairs st, at. At time t the environment state st is augmented
with the post-update hidden state h′

t+1 by concatenation, and this augmented state is
observed by the agent. st, at and h′

t+1 are used to compute a reward r′t+1 following the
relevant steps from Figure 6.3, and the reward is also sent to the agent. In the language
of NMRDPs, the hidden state augmentation expands the agent’s learning problem
into an MDP by providing the additional information required to make the rewards
Markovian. Note that unlike during learning of the MIL models, return predictions are
never required.

6.3.3 Multiple Instance Learning Reward Modelling Architectures

The MIL literature contains a variety of architectures for handling temporal instance
dependencies, including graph neural networks (Tu et al., 2019) and transformers (Shao
et al., 2021). While effective for many problems, such architectures are an unnatural fit
for non-Markovian RM as they contain no direct analogue of a hidden state h′

t carried
forward in time, instead handling dependencies via some variant of message-passing
between instances. LSTM-based MIL architectures (Li and Zhang, 2020; Wang et al.,
2020a) provide a more promising starting point since they explicitly represent both h′

t

(implemented as a continuous-valued vector) and its temporal dynamics function δ′ (a
particular arrangement of gating functions).

Starting from an existing LSTM-based MIL architecture, we propose two successive
extensions as well as a naı̈ve baseline that cannot handle temporal dependencies. All
four architectures include a Feature Extractor (FE) for mapping state-action pairs into
feature vectors and a Head Network (HN) that outputs predictions. These architectures
are depicted in Figure 6.3. Note we use the same nomenclature as Carbonneau et al.
(2018) and Wang et al. (2018): embedding space approaches produce an overall bag
representation that is used for prediction, while instance space approaches produce
predictions for each instance in the bag and then aggregate those predictions to a final
bag prediction.
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Base Case: Embedding Space LSTM (EmbeddingLSTM) This architecture, proposed by
Wang et al. (2020a), processes all instances in a bag sequentially and uses the final LSTM
hidden state as a bag embedding. This is fed into the HN, which predicts the trajectory
return g′ (equivalent to a MIL bag-level prediction Ŷ). Although this model can account
for temporal dependencies, it does not inherently produce reward predictions r′t
(equivalent to MIL instance predictions ŷt). As such, determining the reward
predictions will require post hoc analysis. While methods exist for computing instance
importance values as a form of interpretability (Early et al., 2022c, Chapter 4), these are
not guaranteed to sum to the bag label as stipulated by the reward-return formulation.
We propose a new method: at time t, the predicted reward r′t is calculated by feeding
the LSTM hidden state at times t − 1 and t into the HN to obtain two partial returns g′t−1

and g′t, and computing the difference of the two, i.e., r′t = g′t − g′t−1, where g′0 = 0. This
post hoc computation is shown in purple in Figure 6.3.

Extension 1: Instance Space LSTM (InstanceLSTM) The post hoc computation of
reward proposed above is rather inelegant and often yields poor predictions (see
Sections 6.4 and 6.5), likely because rewards are never computed or back-propagated
through during learning. This leads us to propose an improved architecture, which is
structurally similar but differs in how network outputs are mapped onto RM concepts.
The change places reward predictions on the back-propagation path. Given the LSTM
hidden state at time t, the output of the HN is taken to be the instantaneous reward r′t
rather than the partial return. Rewards are computed sequentially for all timesteps in a
trajectory and summed to give the return prediction g′. We thereby obtain a model that
both handles temporal dependencies and produces explicitly learnt reward predictions.

Extension 2: Concatenated Skip Connection (CSC) Instance Space LSTM
(CSCInstanceLSTM) In both of the preceding architectures, the LSTM hidden state h′

t

is the sole input to the HN. This requires h′
t to represent all reward-relevant information

from both the true hidden state ht and the latest state-action pair st−1, at−1 to achieve
good performance. To lighten the load on the LSTM, we further extend InstanceLSTM

with a skip connection (He et al., 2016; Huang et al., 2017) which concatenates the FE
output onto the hidden state before feeding it to the HN. In principle, this should allow
the hidden state to solely focus on representing temporal dependencies. As well as
improving RM performance compared to an equivalent model without skip
connections, we find in Section 6.6.1 that this modification tends to yield more
interpretable and disentangled hidden state representations.

Markovian Baseline: Instance Space Neural Network (Instance) While the above
models are designed for non-Markovian settings, they also work in Markovian settings.
To quantify the cost of ignoring temporal dependencies, we also run experiments with a
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baseline architecture that is only designed for Markovian settings. This model feeds
only the FE output for each state-action pair into the HN, yielding fully-independent
reward predictions which are summed to give the return prediction. This independent
predict-and-sum architecture has precedence in both MIL, where it is referred to as
mi-Net by Wang et al. (2018), and in RM, where it embodies the de facto standard
Markovian reward assumption (Christiano et al., 2017). Note this is the same MIL
pooling approach used as one of the models in Chapter 4, and the underlying approach
for the Scene-to-Patch (S2P) models in Chapter 5.

FIGURE 6.3: MIL architectures used in this work. FE = Feature Extractor; HN = Head
Network; (+) = scalar summation; (−) = scalar subtraction; (C) = vector concatenation.

6.4 Preliminary Experiments on Toy Datasets

In this section, we detail our preliminary experiments that were run on toy problems to
initially develop and validate our approach. Below we outline the datasets
(Section 6.4.1), models and training hyperparameters (Section 6.4.2), and results
(Section 6.4.3) of these experiments. For further details on our implementation and
model architectures, see Appendix C.

6.4.1 Datasets

We introduce three toy datasets, each abstracted from the RL context, to act as
benchmark tests for our models. Each of these datasets uses ordered bags comprised of
two-dimensional instances, where each instance has an associated label (reward), and
the overall bag label (return) is the sum of the instance labels.
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Toggle Switch An instance is the position of a toggle switch ts and a value v; if the
switch is on (ts = 1), then the reward for the instance is v; otherwise the reward for the
instance is 0. Here, there is no hidden information, as it is possible to calculate the
reward for an instance from its contents ts, v alone. This serves as a null example to
elucidate what happens in a Markovian setting.

Push Switch We modify the toggle switch setup so that the instance now represents a
push switch (p = 1 if this switch is pressed), where pressing the switch flips a binary
hidden state ts (the same information as was previously represented by the toggle
switch). This hidden state then determines the reward as before (v if ts = 0, else 0). As ts
must be tracked between successive instances, it is not possible to determine the reward
for an instance solely by observing its contents p, v, so this setup is non-Markovian.

Dial We generalise the hidden state from a binary switch to a continuous-valued dial.
Given an instance m, v, the dial’s current value d is moved up or down by m. The
reward is then given as d · v. The problem remains non-Markovian, but now the hidden
state that needs tracking, d, is continuous rather than discrete.

6.4.2 Multiple Instance Learning Models and Hyperparameters

When training the MIL models on the toy datasets, we used the Adam optimiser with a
batch size of one (i.e., one bag per batch) to minimise Mean Square Error (MSE) loss.
Training was performed using validation loss early stopping, i.e., if the validation loss
did not decrease after a certain number of training epochs (patience value), we
terminated the training and selected the model at which the validation loss was lowest.
If the patience value was not reached (i.e., the validation loss kept decreasing), we
terminated training after a maximum number of epochs had been reached and selected
the model at which the validation loss was lowest. The hyperparameters for training
the models on each dataset are given in Table 6.1. Dropout was not used. These
hyperparameters were found through a small amount of trial and error, i.e., no formal
hyperparameter tuning was carried out.

TABLE 6.1: MIL training hyperparameters for toy RM datasets. LR = Learning Rate;
WD = Weight Decay.

Dataset LR WD Patience Epochs

Toggle Switch 1 × 10−4 1 × 10−5 20 100
Push Switch 1 × 10−3 0 30 150
Dial 1 × 10−3 0 30 150
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6.4.3 Results

For each of the toy datasets, we generate 5000 random bags with between 10 and 20
instances per bag (uniformly distributed). We use an 80/10/10 dataset split for training,
validation, and testing, and repeat our experiments with ten different variations of this
split (so in total we have ten repeats of each model type for each dataset). We show
results for both return and reward reconstruction for the toy datasets in Table 6.2. From
these results, we can make several observations. Firstly, as expected, Instance only
works on the Markovian Toggle Switch dataset, i.e., it fails on the non-Markovian Push
Switch and Dial datasets as it is unable to deal with temporal dependencies. We also
note that our two proposed architectures (InstanceLSTM and CSCInstanceLSTM)
outperform the baseline EmbeddingLSTM on both return and reward, with
CSCInstanceLSTM providing the best results overall. Finally, we observe that a better
return performance does not always guarantee better reward performance: for the Dial
dataset, InstanceLSTM makes better return predictions than CSCInstanceLSTM, but
worse reward predictions. A similar outcome can be seen for EmbeddingLSTM and
Instance on the Push Switch dataset.

TABLE 6.2: Toy dataset return (top) and reward (bottom) results. Each measurement
is the mean MSE averaged over ten repeats, with the standard errors of the mean also
given. Bold entries indicate the best-performing model for each (metric, dataset) pair.

Model Toggle Switch Push Switch Dial Overall

Instance 0.030 ± 0.029 3.337 ± 0.054 5.489 ± 0.157 2.952
EmbeddingLSTM 0.008 ± 0.002 0.663 ± 0.194 0.434 ± 0.075 0.368
InstanceLSTM 0.062 ± 0.058 0.262 ± 0.154 0.111 ± 0.014 0.145
CSCInstanceLSTM 0.000 ± 0.000 0.140 ± 0.065 0.121 ± 0.043 0.087

Instance 0.002 ± 0.002 0.086 ± 0.001 0.954 ± 0.011 0.347
EmbeddingLSTM 0.003 ± 0.001 0.206 ± 0.100 0.244 ± 0.077 0.151
InstanceLSTM 0.004 ± 0.004 0.021 ± 0.008 0.026 ± 0.004 0.017
CSCInstanceLSTM 0.000 ± 0.000 0.012 ± 0.004 0.022 ± 0.007 0.011

6.5 Advanced RL Experiments and Results

After initially validating our models on several toy datasets, we focus the bulk of our
evaluation on five RL tasks. As running experiments with people is costly, we use the
standard RM approach of generating synthetic preference data (here trajectory return
labels) using ground truth oracle reward functions (Christiano et al., 2017). Unlike prior
work, these oracle reward functions depend on historical information that cannot be
recovered from the instantaneous environmental state, thereby emulating the disparity
between the information that a human evaluator possesses while viewing a trajectory
sequentially and that contained in the state alone. In this section, we introduce our RL
tasks (Section 6.5.1), define the MIL models used for RM (Section 6.5.2), evaluate the
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quality of reward reconstruction (Section 6.5.3), investigate the use of MIL RM models
for agent training (Section 6.5.4), and evaluate their robustness to label noise
(Section 6.5.5). For further details on our implementation and model architectures, see
Appendix C.

Oracle-based experiments are often used to evaluate RM methods since they enable
scalable quantitative validation (Griffith et al., 2013; Hadfield-Menell et al., 2017; Reddy
et al., 2020). However, we identify three concrete differences between our oracle
preference labelling method and realistic human labelling: 1) preference form, 2)
preference sparsity, and 3) preference noise. Preference form is the different ways of
providing labels; in this work, we used return values which are highly informative and
easy to learn from, but it has long been understood that humans find it easier to give
less direct feedback, such as pairwise rankings (Christiano et al., 2017) or
good/bad/neural labels (Kendall, 1957). Preference sparsity occurs when the time- and
cost-expensiveness of eliciting human labels reduces the proportion of data that can be
labelled, and preference noise arises from uncertainties in the human labelling process
(as opposed to perfect oracle labelling). We decided to focus on noise in this work as it
is an established way of making oracle experiments more realistic (Lee et al., 2021b) and
also fits in with our discussion of human uncertainties and cognitive biases. Our
experiments in Section 6.5.5 indicate that our methods degrade gracefully in the
presence of noise, which gives us some confidence that they will transfer well to human
labels. However, future work should consider preference sparsity and form, the latter of
which will involve modifying the data collection pipeline and loss function (e.g., to a
contrastive loss in the case of pairwise rankings). Beyond accounting for these three
differences whilst still using oracle labels, the next step would be to conduct evaluations
using actual human labels.

6.5.1 Reinforcement Learning Task Descriptions

We apply our methods to five non-Markovian RL tasks, the first four of which are
within a common 2D navigation environment and are specifically designed to capture
different kinds of non-Markovian structures. Each environment has two spawn zones
and an episode time limit of T = 100; see Figure 6.4. In each case, the environment state
contains the x, y position of the agent only. The tasks involve moving into a treasure
zone, contingent on some hidden information that cannot be derived from the current
x, y position, but is instead a function of the full preceding trajectory. In the first two
cases, the hidden information varies with time only, but in the other two, it depends on
the agent’s past positions.

The first four tasks are implemented in Python within a common 2D simulator
following the OpenAI Gym standard (Brockman et al., 2016). The agent’s position x, y is
moved by one of five discrete actions: up, down, left, right and no-op. In the first four
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Spawn
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+1 when t > 50
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Spawn zone

FIGURE 6.4: Visualisations of our proposed non-Markovian RL tasks.

cases, the position is moved by 0.1 in the specified direction. The motion vector is then
corrupted by zero-mean Gaussian noise with a standard deviation of 0.02 in both x and
y and clipped into the bounds [0, 1]2. Zones of interest (spawn, treasure, key, charger
zones) are specified as rectangles lying within these bounds. At time t, the environment
state st (which is directly observed by the MIL RM models) is the 2D vector of the
current position [xt, yt]; its dynamics are Markovian given the agent’s chosen action.
The hidden state ht is the task-specific information that renders the oracle’s reward
function R Markovian.

Timer For times t ≤ 50 the treasure gives a reward of −1 for each timestep that the
agent spends inside it, before switching to +1 thereafter. Since time is not included in
the environment state, recovering the reward function by only observing the agent’s
current position is impossible. The hidden state simply tracks the current timestep
index: h0 = 0 and ht+1 = δ(ht, st, at) = ht + 1. Reward is given by

R(st, at, ht+1) = in treasure(st)×
{

−1 if ht+1 ≤ 50,
+1 otherwise,

where in treasure([xt, yt]) = 1 if 0.4 ≤ xt ≤ 0.6 and 0.7 ≤ yt ≤ 0.9, and 0 otherwise.3

Moving The Timer task only captures a binary change, therefore we generalise it to be
continuous. In this case, the treasure zone oscillates left and right at a constant speed.
Again, this is not captured in the environment state but can be recovered if the length of
the preceding trajectory is known. h0 = [0.4,−0.02]: the initial horizontal position (left
edge) and velocity of the moving treasure rectangle. Hidden state dynamics encode the
left-right oscillation:

ht+1 = δ(ht, st, at) =

[
ht[0] + ht[1],

{
ht[1] if 0 < (ht[0] + ht[1]) < 0.8,
−ht[1] otherwise

]
.

3Note the timestep indices used here, which result from the order in which environment states, hidden
states, and rewards are computed. At time t, the hidden state ht is first updated to ht+1 by δ(ht, st, at), then
the reward is computed as R(st, at, ht+1), and finally the environment state is updated to st+1 by D(st, at).
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Reward is given by R([xt, yt], at, ht+1) = 1 if ht+1[0] ≤ xt ≤ ht+1[0] + 0.2 and
0.7 ≤ yt ≤ 0.9, and 0 otherwise.

Key Before reaching the treasure zone, the agent must first enter a second zone to
collect a key; otherwise it receives 0 reward. As the key’s status is not captured in the
environment state, a temporal dependency exists between the agent’s past positions
and the reward it obtains from the treasure. h0 = 0, indicating that the agent initialises
without the key. The key collection dynamics are encoded by

ht+1 = δ(ht, [xt, yt], at) =

{
1 if 0.4 ≤ xt ≤ 0.6 and 0.1 ≤ yt ≤ 0.3,
ht otherwise.

Reward is given by R(at, at, ht+1) = in treasure(st) · ht+1, where the in treasure
function is the same as in the Timer task.

Charger We generalise the Key task by replacing the key zone with a charging zone
that builds up the amount of reward the agent will receive when it reaches the treasure.
The reward now depends not only on whether the agent visits a zone (binary) but how
long it spends there (continuous). h0 = 0, indicating an initial charge level of zero. The
charging dynamics are encoded by

ht+1 = δ(t, [xt, yt], at) =

{
min(ht + 0.02, 1) if yt ≤ 0.3,
ht otherwise.

Reward is given identically to the Key task, R(at, at, ht+1) = in treasure(st) · ht+1.

For the fifth and most complex task, Lunar Lander, we adapt LunarLander-v2 from
OpenAI Gym (Brockman et al., 2016), where the task is to land on a landing pad. Our
adaptation adds the condition that the lander should take off again and stably hover
after 50 timesteps on the landing pad.4 This is analogous to the Charger task but with a
larger state-action space and longer episodes (T = 500). We leave the state and action
spaces unmodified from the original task. The 8D state vector is [x, y, vx, vy, θ, θ̇, cl , cr],
where x, y and vx, vy are the landing craft’s horizontal and vertical positions and
velocities, θ and θ̇ are its angle from vertical and angular velocity, and cl , cr are two
binary contact detectors indicating whether the left and right landing legs are in contact
with the ground. The 2D continuous action [um, us] is a pair of throttle values for two
engines: main um and side us.

We also retain the default initialisation conditions (the lander spawns in a narrow zone
above the landing pad, with slightly randomised orientation and velocities), the

4For an example, see https://github.com/JAEarly/MIL-for-Non-Markovian-Reward-Modelling/

blob/main/LL_gif.gif.

https://github.com/JAEarly/MIL-for-Non-Markovian-Reward-Modelling/blob/main/LL_gif.gif
https://github.com/JAEarly/MIL-for-Non-Markovian-Reward-Modelling/blob/main/LL_gif.gif
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automatic termination of episodes when |x| exceeds 1 (i.e., when the lander leaves the
rendered screen area), and the physics that determine how the lander responds to
engine activations. However, we replace the standard reward function with an oracle
that rewards the agent for landing on the pad for up to 50 timesteps and then taking off
again to hover within a target zone until an episode time limit (T = 500) is reached.
Rendering this two-stage objective Markovian requires a hidden state ht that tracks the
number of timesteps spent on the pad so far. Formally, reward is given by

R(st, at, ht+1) =

{
Rpad(st) + Rshaping(st, 0) if ht+1 < 50,
Rno contact(st) + Rhover(st) + Rshaping(st, 1) otherwise.

Each sub-reward is as follows:

Rpad rewards the agent for being central with both legs on the ground (i.e., on the pad):

Rpad(st) =

{
1 if − 0.2 ≤ xt ≤ 0.2 and cl

t = 1 and cr
t = 1,

0 otherwise.

Rno contact rewards breaking leg-ground contact:

Rno contact(st) =

{
1 if cl

t = 0 and cr
t = 0,

0 otherwise,

Rhover rewards aerial positions in a target zone above the pad:

Rhover(st) =

{
1 if − 0.5 ≤ xt ≤ 0.5 and 0.75 ≤ yt ≤ 1.25,
0 otherwise,

Rshaping promotes slow, stable, central flight towards a target vertical position ytarget:

Rshaping(st, ytarget) =

0.1 × max
(

2 −
(√

(xt)2 + (yt − ytarget)2 +
√
(vx

t )
2 + (vy

t )
2 + |θt|+ |θ̇t|

)
, 0
)

.

The hidden state dynamics are

ht+1 =

{
min(ht+1, 50) if Rpad(st) = 1,
ht otherwise,

with h0 = 0.

An important design decision for the LSTM-based models is the size of the hidden state,
as it affects both performance and interpretability. For all the above tasks, we know a
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priori that it is possible to capture the temporal dependencies in at most two dimensions,
so we constrain our models to use 2D hidden states. This allows us to visualise and
interpret the hidden representations in Section 6.6.1.

6.5.2 Multiple Instance Learning Models and Hyperparameters

The MIL model training on the Timer, Moving, Key, and Charger tasks used the same
process as for the toy model training (see Section 6.4.2). However, we also applied
dropout (DO) in these models. There are several differences between the MIL training
process for the Lunar Lander task and the four other RL tasks. Firstly, the reward
targets (and as such, return targets) were scaled down by a factor of 100 in order to
avoid extremely large gradients from high prediction targets. For example, a trajectory
with an original return of 700 would have a scaled return of 7. Secondly, the input data
was scaled linearly between -0.5 and 0.5 (using the minimum and maximum range of
each feature). This was found to give more consistent feature ranges than
mean/standard deviation scaling as was used in the other tasks (this was due to large
outliers in certain features, e.g., the rotational features were largely clustered around 0,
but had extreme values up to ± 90).

We give the MIL training hyperparameters for these RL tasks in Table 6.3. Again, these
hyperparameters were found through a small amount of trial and error, i.e., no formal
hyperparameter tuning was carried out. As such, better performance of these models
could potentially be achieved with better parameters (including shorter training times
with a higher learning rate).

TABLE 6.3: RM MIL training hyperparameters for RL tasks.

Dataset LR WD DO Patience Epochs

Timer 5 × 10−4 0 0.1 50 250
Moving 5 × 10−4 0 0.1 50 250
Key 5 × 10−4 0 0.1 30 150
Charger 5 × 10−4 0 0.1 50 250
Lunar Lander 1 × 10−4 0 0 30 200

6.5.3 Reward Modelling Results

Below we discuss the performance of the reward reconstruction for the different MIL
RM models on our five RL tasks. For each task, we generate initial trajectories to form
our MIL RM datasets. We obtain datasets of several thousand trajectories per task,
containing a wide distribution of outcomes and return values. To do so, for each task,
we define a discrete trajectory classification function CTask : Ξ → CTask, where |CTask| is the
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number of classes. We also define a limit pTask on the proportion of trajectories in the
dataset that are allowed to map to each class. These are given as follows:

• Timer: CTimer = num neg× num pos, where num neg = {0, . . . , 50} counts the
number of timesteps the agent spends in the treasure while its reward is negative
(t ≤ 50), and num pos = {0, . . . , 50} counts the number while the reward is
positive (t > 50). |CTimer| = 512 = 2601 and the per-class limit is pTimer = 0.002.

• Moving: CMoving = num treasure, where num treasure = {0, . . . , 100} counts
the timesteps spent in the treasure. |CMoving| = 101 and pMoving = 0.05.

• Key: CKey = {no key, key no treasure, treasure}, where the class is no key if
the key is not collected, key no treasure if the key is collected but the treasure is
not reached, and treasure if the treasure is reached after collecting the key.
|CKey| = 3 and pKey is defined on a per-class basis: 0.25 for no key and key, and
0.5 for treasure.

• Charger: CCharger = num treasure× charge bin, where
num treasure = {0, . . . , 100} counts the timesteps spent in the treasure and
charge bin = {1, . . . , 20} is a binned representation of the mean charge level
when in the treasure (e.g., 0.0 maps to bin 1, 0.48 to bin 10, 0.96 to bin 20).
|CCharger| = 2020 and pCharger = 0.002.

• Lunar Lander: CLL = pad bin× take off× hover bin, where
pad bin = {0, [1 : 49], 50+} is a binned representation of the number of timesteps
spent on the landing pad (i.e., zero, between 1 and 49 inclusive, or at least 50),
take off = {0, 1} is a binary indicator of whether the lander takes off again after
being on the pad, and hover bin = {0, [1 : 19], 20+} is a binned representation of
the number of timesteps spent in the hover zone after being on the pad.5

|CLL| = 18, of which 9 are actually realisable (e.g., the lander cannot take off from
the pad if it never reached it in the first place) and pLL = 0.2.

Using the above functions, we generate a dataset DTask for each task with a wide
distribution of trajectories. Each task-specific monolithic dataset is then broken into
training, validation, and testing splits. For the timer, moving, key, and charger tasks,
DTask is assembled iteratively. On each iteration, we generate a length-100 trajectory ξ

by sampling agent actions uniform-randomly from the action space (up, down, left,
right, no-op) and running them through the simulator. Once the trajectory is complete,
we evaluate its class CTask(ξ). If there are already at least pTask × 5000 trajectories in
DTask with this class, ξ is discarded. Otherwise, it is added to DTask. This process repeats
until |DTask| = 5000.

5If the lander reaches the target of 50 timesteps on the pad, the time in the hover zone is measured from
this point onwards. Otherwise, it is measured from the first timestep that the lander leaves the pad.
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The state-action space for Lunar Lander is too large for a random generate-and-select
algorithm to terminate in any reasonable time. Instead, we recycle the length-500
trajectories generated as a by-product of training the oracle-based RL baselines (black
curves in Figure 6.5, plus six more runs not included in the figure). Starting from a bank
of 12000 trajectories, filtering based on the threshold pLL = 0.2 yields a final dataset DLL

with 9762 trajectories. Although this approach of relying on oracle-trained agents to
generate data may initially appear to “put the cart before the horse”, we suggest that it
provides a valuable test of the ability of our MIL models to learn from goal-directed (as
opposed to random) trajectories, and thus is a step closer to the online bootstrapping
approach of simultaneous RM and RL, which we aim to tackle in future work (see
Section 6.6.4).

Results from MIL models trained on these trajectories are given in Table 6.4. We observe
that CSCInstanceLSTM is on average the best-performing model for predicting both
trajectory returns and timestep rewards. While EmbeddingLSTM performs best at
predicting return on the Key and Lunar Lander tasks (as is not constrained to the
summation of reward predictions as in the other architectures), it struggles on the
reward metric (due to the use of a proxy post hoc method). As it is important for these
models to achieve strong performance on both return and reward prediction, the
InstanceLSTM and CSCInstanceLSTM are better candidates than EmbeddingLSTM. Also
note that Instance, which serves as our Markovian RM baseline, performs very poorly
on return prediction, indicating that these tasks indeed cannot be learnt without
modelling temporal dependencies.

TABLE 6.4: MIL RM return (top) and reward (bottom) results, using ten repeats. The Lu-
nar Lander results are the average test set MSE (with scaling applied; see Section 6.5.2)
of the top five models (see Section 6.6.3). For the other tasks, each measurement is the
test set MSE averaged over all ten repeats. The standard errors of the mean are given,
and the Lunar Lander reward results are scaled by 1 × 10−5.

Model Timer Moving Key Charger Lunar Lander

Instance 130.8 ± 1.530 22.24 ± 0.441 7.764 ± 0.232 7.783 ± 0.214 2.297 ± 0.058
EmbeddingLSTM 3.151 ± 0.662 13.04 ± 0.899 0.360 ± 0.055 0.689 ± 0.124 0.416 ± 0.048
InstanceLSTM 7.313 ± 2.627 11.13 ± 1.169 0.488 ± 0.062 0.628 ± 0.126 1.223 ± 0.431
CSCInstanceLSTM 0.605 ± 0.166 5.307 ± 0.299 0.391 ± 0.083 0.125 ± 0.012 0.501 ± 0.035

Instance 0.217 ± 0.001 0.068 ± 0.000 0.011 ± 0.000 0.025 ± 0.000 7.484 ± 0.861
EmbeddingLSTM 101.8 ± 60.35 3.033 ± 0.715 0.010 ± 0.008 0.037 ± 0.016 120.2 ± 24.27
InstanceLSTM 0.263 ± 0.038 0.069 ± 0.005 0.002 ± 0.000 0.005 ± 0.001 9.336 ± 3.116
CSCInstanceLSTM 0.073 ± 0.016 0.026 ± 0.002 0.001 ± 0.000 0.001 ± 0.000 7.365 ± 1.032

6.5.4 Reinforcement Learning Training Results

Following the method in Section 6.3.2, we then train RL agents to optimise the rewards
learnt by the LSTM-based models. We use Soft Actor-Critic (Haarnoja et al., 2018) for
the Lunar Lander task and Deep Q-Network (Mnih et al., 2015) for the four other tasks.
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We evaluate agent performance in a post hoc manner by passing its trajectories to the
relevant oracle. This evaluation provides an end-to-end measure of both reward
reconstruction and policy learning, and is standard in RM (Christiano et al., 2017). We
baseline against agents trained with access to a) the oracle reward function and the
oracle hidden states, and b) just the oracle reward function without hidden states (i.e.,
using only the environment states that are missing information). In Figure 6.5, we
observe that CSCInstanceLSTM enables the best RL agent performance, coming closest
to the oracle. Interestingly, for the Timer and Lunar Lander tasks, CSCInstanceLSTM
actually outperforms the use of the oracle, suggesting that the learnt hidden states are
easier to exploit for policy learning than the raw oracle state (we investigate what these
models have learnt in Section 6.6.1). Note the poor performance of agents trained
without hidden state information, which aligns with expectations. For further details on
agent training, see Appendix C.4.
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FIGURE 6.5: RL performance for different training configurations on our five RL tasks.
The results given are the medians and interquartile ranges. For the oracle results, we
trained ten repeats, and for the MIL-LSTM results, we performed one RL training run
for each MIL-LSTM model repeat.

For Lunar Lander, we perform a deeper analysis of RL training performance, by
decomposing the oracle return curves from Figure 6.5 into the four reward components
Rpad, Rno contact, Rhover and Rshaping (see Section 6.5.1 for definitions). The decomposed
curves, shown in Figure 6.6, allow us to diagnose the origins of the performance
disparity between runs using different LSTM model architectures. There is relatively
little separation in performance on the shaping reward Rshaping and pad contact reward
Rpad (for the latter, all runs end up reliably achieving the maximum possible reward of
49, although those using EmbeddingLSTM models require significantly more training
time). This suggests that all models have been able to recover these components with
reasonable fidelity. However, there are marked differences in performance on Rno contact

and Rhover (the components relating to the second task stage of taking off and moving to
the hover zone). For Rhover, runs using CSCInstanceLSTM peak at a return of around 200
from this component, while those using the other two models rarely achieve a non-zero
return, i.e., only the RL agents trained using the CSCInstanceLSTM RM models reliably
learn to hover. This indicates that the models have learnt very different representations
of reward and hidden state dynamics, which are effective for policy learning in the case
of the CSC model, and highly ineffective for the others.
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Observe that runs using CSCInstanceLSTM models outperform those with direct access
to the ground truth oracle on all components, and most markedly on Rhover. This
counterintuitive finding suggests that this model reliably learns hidden state
representations that are easier for RL agents to leverage for policy learning than the
ground truth ones, and potentially that certain errors in the reward prediction may
actually be beneficial for helping agents to complete the underlying task (especially the
hovering stage). In typical RL parlance: the model’s reward function appears to be
better shaped than the ground truth. The potential origins of this better-than-oracle
phenomenon are investigated in Figure 6.13.
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FIGURE 6.6: Decomposed oracle return curves for Lunar Lander.

6.5.5 Robustness to Mislabelling

In this work, the return labels are provided by oracles rather than real people. When
using human evaluators, there is likely to be uncertainty in the labels, and it is
important to evaluate model robustness against such noise (Lee et al., 2021b). We
implement noise through label swapping (Rolnick et al., 2017); this ensures the marginal
label distribution remains the same and does not include out-of-distribution returns. In
Figure 6.7, we show how both return and reward prediction decay with noise levels
increasing from 0 (no labels swapped) to 0.5 (half swapped). The rate, smoothness, and
consistency (across three repeats) of this decay vary between tasks, with decay in return
prediction generally being smoother. We observe that CSCInstanceLSTM remains the
strongest predictor of both return and reward in the majority of cases, indicating
general robustness and providing evidence that the model should still be effective with
imperfect human labels. On all metrics aside from Timer reward loss (where the mix of
negative and positive rewards makes the effect of noise especially unpredictable), a
noise level of at least 0.3 is required for CSCInstanceLSTM to perform as badly as
Instance does with no noise at all.

6.6 Discussion

In this section, we seek to interpret our MIL RM models, analysing the distribution of
learnt hidden states (Section 6.6.1) as well as their temporal dynamics throughout a



6.6. Discussion 125

Charger

0

0 0.5

0.
02

0
10

R
et

ur
n 

M
SE

 L
os

s
R

ew
ar

d 
M

SE
 L

os
s

Instance Space NN CSC Instance Space LSTMInstance Space LSTMEmbedding Space LSTM

0
10

0

Timer

Noise Level0 0.5

0.
3

0

Moving

0.50

0
0.

07
5

0
20

Key

0
0.

02
0

15

0.50

FIGURE 6.7: Performance of MIL RM models subject to label noise. We omit
EmbeddingLSTM reward losses as they are very high, and the Lunar Lander task due to
long training times.

trajectory (Section 6.6.2). We also conduct an in-depth analysis of the Lunar Lander task
(Section 6.6.3). Finally, in Section 6.6.4 we discuss the limitations of this work and
potential areas for future work.

6.6.1 Hidden State Analysis

The primary purpose of RM is to perform accurate reward reconstruction to facilitate
agent training, but there is a secondary opportunity to improve understanding of
human preferences through interpretability analysis of the learnt models. We can
directly visualise the 2D LSTM hidden states of our oracle experiments, which enables a
qualitative comparison of the various model architectures (see Figure 6.8). Visualising
the hidden states with respect to the temporal dependencies indicates that
CSCInstanceLSTM has learnt insightful hidden state representations. Breaking down the
CSCInstanceLSTM hidden embeddings: for the Timer task, time is represented along a
curve, with a sparser representation around t = 50 (the crossover point when the
treasure becomes positive). For the Moving task, time is similarly captured along with
an additional notion of the change in treasure direction from right to left. For the Key
task, the binary state of no key vs key is separated, with additional partitioning based
on x position, denoting the two different start points of the agent. For the Charger task,
the charge level can be recovered and the inflexion point between under-charging and
over-charging is captured, i.e., this is where the optimal charge level lies, subject to
some noise based on where the agent starts in the spawn zones. In the Lunar Lander
task, the model has learnt a strong separation between states on either side of the
crossover point when the time on the pad is equal to 50, with high sparsity around the
crossover point. In comparison, the Embedding and InstanceLSTM have not learnt as
sparse a representation.
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FIGURE 6.8: Learnt hidden state embeddings for our MIL RM models. For each
model and task, we categorise the hidden state embeddings depending on the true
environment state (first column for each model). In and Out environments states
indicate whether the agent is in the treasure zone or not, and for the Moving task, Left
and Right indicate the direction in which the goal is currently moving. We also provide
labelling based on temporal information (second column for each model). Furthermore,
we include markers to indicate the hidden states for the centres of the agent spawn
zones. In each case, we elected to use the best-performing repeat for each model as
assessed by the reward reconstruction (see Table 6.4). Note, for the Key task, as the
temporal information is captured in the state categorisation (No Key vs Key), we use
the second column to show the relationship between the hidden embeddings and the
agent’s x position.

6.6.2 Trajectory Probing

We further interpret our models by visualising the learnt reward with respect to the
environment state, and by using hand-specified probe trajectories to verify that the
learnt hidden state transitions mimic the true transitions. We analyse the
best-performing CSCInstanceLSTM (according to the reward reconstruction metric) for
the Timer (Figure 6.9), Moving (Figure 6.10), Key (Figure 6.11), Charger (Figure 6.12),
and Lunar Lander (Figure 6.13) tasks.
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FIGURE 6.9: Timer task trajectory probing.
Top: Predicted reward with respect to time and position. We observe that the model has
correctly captured the transition from negative to positive reward in the treasure region
at t = 50, with no reward outside of this region. Although the reward is positive at
t = 50, the model is uncertain at this point, i.e., the transition from negative to positive
reward happens over two timesteps rather than one.
Middle/bottom: Four trajectory probes demonstrating the model’s hidden state transi-
tions. “xn” labels indicate the agent remaining in a position for n timesteps.
Optimal: The agent moves into the treasure region at t = 50 and remains there, receiving
the maximum possible reward.
Too Late: The agent moves into the treasure region a while after the treasure has already
become positive, i.e., it is missing out on reward by not being in the region for as long
as possible. This is reflected in the hidden state plot, where the state transitions from
the orange to the red region after the t = 50 boundary.
Too Early: The agent moves into the treasure region before the treasure becomes positive,
therefore, while it earns the maximum amount of positive reward, it also earns negative
reward, leading to a sub-optimal result.
Challenging: The agent moves into the treasure region at the correct time, but proceeds
to jump in and out of the treasure region before settling, leading to lost reward. The
hidden state trajectories somewhat mimic this movement by transitioning between the
orange and red regions, although the jumps are less clear near the t = 50 transition
point, suggesting the model is uncertain at this point.
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FIGURE 6.10: Moving task trajectory probing.
Top: The predicted reward with respect to time (and thus implicitly, the position of the
treasure region). The model has learnt to track the treasure region as it moves, although
there is noise around the left and right edges of the region, highlighting the difficulty
of recovering the treasure region’s horizontal position exactly.
Middle/bottom: Four trajectory probes showing the model’s hidden state transitions.
Note the green dotted region indicates the overall boundary of the treasure region, i.e.,
the treasure lies somewhere within that boundary, with its true horizontal position
dependent on time.
Optimal Left: The agent moves within the treasure region as quickly as possible and
then moves with the treasure (keeping within it) for the remainder of the episode. The
hidden state trajectories follow the “In” regions (green and red).
Optimal Right: A similar optimal probe where the agent starts from the right-hand
spawn zone rather than the left. In this case, the agent has further to move before
moving into the treasure region, leading to slightly less overall reward than when it
starts from the left.
Static: Rather than moving with the treasure region, the agent stays still and allows the
treasure to pass over it, gaining reward for some timesteps but not others. We observe
that the hidden state trajectory also reflects this — the state transitions between the “In”
and “Out” regions.
Challenging: The agent takes a while to move towards the treasure region, and then
passes in and out of the boundary in which the treasure resides, picking up some
reward. We can see from the hidden state trajectory that this motion is captured in the
hidden states — the trajectory transitions between the orange and red regions as the
agent passes back and forth through the treasure region.
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FIGURE 6.11: Key task trajectory probing.
Top: The predicted reward with respect to time and collection of the key. The model
has learnt to only give reward when the agent is in the treasure region after collecting
the key.
Middle/bottom: Four trajectory probes showing the model’s hidden state transitions.
Optimal Left: The agent collects the key as quickly as possible, and then proceeds to
move into the treasure region and wait there until the end of the episode. The hidden
state trajectory shows two notable transitions, first when the key is collected (blue to
orange) and then when the agent enters the treasure region (orange to red).
Optimal Right: A similar optimal policy, but from the right-hand spawn zone rather
than the left. Note the hidden state trajectory is very similar, apart from the initial
hidden state, which is at the opposite side of the blue region, representing the different
spawn position.
Suboptimal: The agent passes through the treasure region before collecting the key, and
then follows an optimal policy. We observe a transition in the hidden state trajectory
from the blue to the green region that corresponds to the agent’s premature entrance
into the treasure region.
Failure case: The agent enters the treasure region without collecting the key and remains
there for the rest of the episode. This highlights a failure case of the model, where the
hidden state “drifts” from the green region to the red region, i.e., the model convinces
itself that the agent must have picked up the key at some point. Such causal confusion
errors are well-documented in the RM literature (Tien et al., 2022). In our case, we
suspect that the error is due to a bias in our data generation method inducing a
correlation between key possession and time spent in the treasure region. As described
in Section 6.5.3, we specifically screen for trajectories where the treasure is visited with
the key (the “treasure” class) but not for those where it is visited without it. There are
thus likely to be very few training trajectories that spend a lot of time in the treasure
region without collecting the key, making this probe an extreme outlier on which
performance is poor. Adding and selecting for a fourth “key no treasure” class during
data generation may have mitigated this issue.
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FIGURE 6.12: Charger task trajectory probing.
Top: the learnt relationship between agent position, charge level, and reward. The
model has correctly learnt the relationships between position, charge, and reward
(reward increases in the treasure zone as charge increases).
Middle/bottom: Four probe trajectories demonstrating hidden state transitions as the
trajectory progresses.
Optimal: best possible return (charge to sufficient level then maximise time in treasure).
Under-charged: spending more time in the treasure zone but less time charging, which
leads to sub-optimal return, i.e., it is better to spend less time in the treasure zone but
with more charge.
Over-charged: continuing to charge after maximum charge of 1 is reached.
Challenging: The agent moves in and out of the charging zone before proceeding to the
treasure zone. The learnt hidden states align with the agent moving in and out of the
charging zone.
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FIGURE 6.13: Lunar Lander task trajectory probing.
Top: The predicted reward with respect to the agent’s position and the length of time
that it has been on the pad. The model has learnt to reward the agent for landing
on the pad when it has not previously landed, and then reward it for taking off and
remaining in the hover zone after 50 timesteps on the pad, as per the oracle. However,
observe how the top half of the hover zone is attributed higher reward than the lower
half. This feature is not present in the oracle (which rewards the entire hover zone
equally) but makes great practical sense, as a stochastic policy is less likely to drop
out of the zone under the effect of gravity if it remains some distance from the bottom
edge. Also note the small negative rewards near the environment boundaries, which
disincentivise positions with a high risk of leading to early termination, and the “funnel”
of intermediate positive reward, which may help to guide the agent up from the pad to
the hover zone. Collectively, these deviations from the oracle reward function could
actually be seen as improvements, and explain why we observe significantly higher
performance on the Rhover reward component when the CSCInstanceLSTM reward
model is used, compared with using the oracle itself.
Middle/bottom: Four trajectory probes showing the model’s hidden state transitions.
Correct: The agent lands on the pad as quickly as possible, waits for 50 timesteps, and
then takes off again and hovers in the hover zone. The hidden state trajectory shows a
transition from right to left once the agent has been on the pad for long enough. It also
clearly shows the agent is in the Hovering hidden state region.
No Hover: In this trajectory, the agent remains on the pad for too long and does not
enter the hover zone. It has a similar hidden state transition to the Correct trajectory but
does not enter the Hovering hidden state region.
Too Short: The agent lands on the pad but does not stay there for the required 50
timesteps. In this particular case, the agent lands correctly but then slips out of the
landing pad, coming to rest on a different area of terrain until the end of the trajectory.
In the hidden state trajectory, there is no transition from the right side to the left side,
matching the idea that the agent has not remained on the pad for long enough.
Never Landed: The agent does not land on the pad at all. In this particular example, the
agent reaches the boundary of the environment, which causes the episode to terminate
early. Similar to the Too Short example, the hidden state trajectory does not transition
from right to left.
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6.6.3 Lunar Lander Multiple Instance Learning Analysis

In Table 6.4, we presented results for Lunar Lander using only the top five performing
models by reward MSE (50% of all models). In this section, we discuss why this is the
case.

When training the Lunar Lander architectures with linear activation functions in the
HNs, we found that the models were struggling to learn the correct return predictions
as they were making negative reward predictions. We know a priori that the Lunar
Lander task only has positive rewards, therefore we added a Leaky ReLU activation
(with a negative slope of 1 × 10−6) to each architecture’s HN to encourage positive
predictions. This led to an immediate improvement in performance for all model
architectures (excluding Instance, but this was expected to fail on this task as it cannot
model temporal dependencies).

However, we found that a proportion of model initialisations remained unable to
overcome a certain local minimum during training (corresponding to a return
prediction MSE of around 2.1). In other cases, after this threshold was passed, the
model performance would rapidly improve. Note this problem occurred in each of the
LSTM-based models (Instance was never observed to pass this threshold). Therefore,
we focus our evaluation on the top 50% of models, which is equivalent to discarding the
worse-performing models, the majority of which had not passed the problematic
threshold during training.

We investigate this training issue further in Figure 6.14, focusing specifically on
CSCInstanceLSTM models. Although the Leaky ReLU activation encourages models to
make positive predictions, we can see that it does not prevent them entirely.
Furthermore, the models that are not able to cross the return threshold of 2.1 tend to
output a greater proportion of negative reward predictions. We thus hypothesise that a
better mechanism for preventing negative reward prediction would increase the chance
that a given model training run achieves a return loss of less than 2.1. Below we list
several such mechanisms as alternatives to our current Leaky ReLU approach.

Replace Leaky ReLU with ReLU One option to remove negative reward predictions
entirely is to use ReLU rather than Leaky ReLU in the final activation function of the
HNs. However, in the case that all the reward predictions are negative, the gradient of
the network will be zero, so no learning can take place. The ability of the network to
learn is entirely dependent on achieving at least one positive prediction in order to
generate non-zero gradients, which is determined by the initial network weights. This
could potentially be overcome with different network initialisation approaches, or by
simply discarding training runs that fail to begin to learn.
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FIGURE 6.14: An analysis of the negative reward prediction of the ten Lunar Lander
CSCInstanceLSTM models trained in this work. Note we observed similar trends for
EmbeddingLSTM and InstanceLSTM.
Left: Models that are able to cross the return loss threshold of 2.1 make fewer negative
reward predictions (given here as a percentage of all reward predictions) than those
that cannot.
Middle: As the number of negative reward predictions increases, so too does the
standard deviation of the reward predictions. In order to sum to the correct return
predictions, the positive reward predictions must increase to compensate for the neg-
ative reward predictions, leading to a larger variance, and ultimately worse reward
prediction.
Right: The standard deviation of the reward predictions also highlights the loss thresh-
old of 2.1, although not as clearly as the percentage of negative reward predictions.

Replace Leaky ReLU with Sigmoid Instead of using a Leaky ReLU or ReLU
activation in the HN, the Sigmoid activation function could be used. This would
overcome the gradient issue presented with the use of ReLU and would ensure that no
negative rewards are predicted. However, this would require a priori knowledge of the
maximum reward target in order to scale the network outputs correctly, and the
non-linear activation could make accurate prediction of rewards more difficult in some
cases.

Remove target normalisation A further approach to decrease the number of negative
reward predictions would be to remove or reduce the reward target scaling. As
discussed above, this was initially included to avoid very large gradients. However,
reducing this scaling would move the average reward prediction away from zero,
potentially reducing the number of negative predictions. Care would have to be taken
to not reintroduce the large gradient problem.

Regularise reward prediction variance A final alternative approach could be to
introduce an additional loss term that encourages the reward predictions to have low
variance. This would deter a large range of reward predictions, leading indirectly to
fewer negative reward predictions (see Figure 6.14). However, this approach is only
applicable to the LSTM models that produce instance predictions, i.e., it cannot be used
with the EmbeddingLSTM as that architecture does not produce reward predictions
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during training. Furthermore, this would result in an additional hyperparameter that
requires tuning (a coefficient for the new loss term).

6.6.4 Limitations and Future Work

Although we analyse the performance of our methods in the presence of noisy labels in
Section 6.5.5, a major area of future work is to apply our methods to human labelling (as
discussed at the start of Section 6.5). Another area of future work involves more
complex environments, for example, the use of tasks with image observations, similar
to the Atari environments in OpenAI Gym (Brockman et al., 2016). Furthermore, we
perform RM from either an offline dataset or from only one RL training iteration; an
iterative bootstrapping approach with multiple RL + RM training iterations could lead
to improved RL results. There are also limitations with our MIL RM approach for the
Lunar Lander task; see Section 6.6.3 for details and suggestions for future work. More
generally, we hope that our identification of the link between RM and MIL may inspire
a bidirectional transfer of tools and techniques.

6.7 Conclusion

We posed the problem of non-Markovian RM, which removes an unrealistic assumption
about how humans evaluate temporally extended agent behaviours. After identifying
an isomorphism between RM and MIL, we proposed and evaluated novel MIL-inspired
models that allow us to reconstruct non-Markovian reward functions, augment agent
training, and interpret their learnt representations.

In the next research chapter, we remain working on sequential data, but change the
application domain to Time Series Classification (TSC). Note in this chapter we focused
on MIL regression, but the next chapter uses multi-class classification problems. As well
as changing the domain, the next chapter has a greater focus on “plug-and-play”
methods: integrating MIL into existing State-Of-The-Art (SOTA) methods to enhance
interpretability and predictive performance.
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Chapter 7

Inherently Interpretable Time Series
Classification via Multiple Instance
Learning

This chapter presents a piece of work published as a spotlight paper (top 5%) at ICLR
2024. The work was completed during my internship with Amazon Prime Video
(March to September 2023). It was done in collaboration with a team at Amazon, in
which I led the research and was the lead author of the paper. The co-authors were
Gavin Cheung (mentor), Kurt Cutajar, Hanting Xie, Jas Kandola, and Niall Twomey
(supervisor), who all provided supervision and manuscript feedback — all technical
development and design was done by myself. Appropriate permission has been given
by Amazon to include it in this thesis. The content is mostly unchanged from its
original format: elements of the original appendix have been brought into the main
body, certain sections have been slightly reworded, and some terminology/notation has
been modified for consistency with the rest of this thesis.

Paper

Joseph Early, Gavin KC Cheung, Kurt Cutajar, Hanting Xie, Jas Kandola, and Niall
Twomey. Inherently interpretable time series classification via multiple instance
learning. Internation Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=xriGRsoAza

GitHub: https://github.com/JAEarly/MILTimeSeriesClassification
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7.1 Introduction

Time Series Classification (TSC) is the process of assigning labels to sequences of data
and occurs in a wide range of settings — examples from the popular UCR collection of
datasets include predicting heart failure from electrocardiogram data and identifying
household electric appliance usage from electricity data (Dau et al., 2019). Each of these
domains has its own set of class-conditional discriminatory signatures that determine
the class of a time series. Deep Learning (DL) methods have emerged as a popular
family of approaches for solving TSC problems. However, we identify two drawbacks
with these conventional supervised learning approaches: 1) representations are learnt
for each time point in a time series, but these representations are then lost through an
aggregation process that weights all time points equally, and 2) these methods are black
boxes that provide no inherent explanations for their decision making, i.e., they cannot
localise the class-conditional discriminatory signatures. These drawbacks not only limit
predictive performance but also introduce barriers to their adoption in practice as the
models are not transparent.

To mitigate these shortcomings, we take an alternative view of DL for TSC, approaching
it as a Multiple Instance Learning (MIL) problem. MIL is a weakly supervised learning
paradigm in which a collection (bag) of elements (MIL instances) all share the same label.
In the context of TSC, a bag is a time series of data over a contiguous interval. In the
MIL setting, the learning objective is to assign class labels to unlabelled bags of time
series data whilst also discovering the salient signatures within the time series that
explain the reasons for the predicted class. As we explore in this work, MIL is
well-suited to overcome the drawbacks identified above, leading to inherent
interpretability without compromising predictive performance (even improving it in
some cases). We propose a new general framework applying MIL to TSC called MILLET:
Multiple Instance Learning for Locally Explainable Time series classification.
Demonstrative MILLET model outputs are depicted in Figure 7.1.

FIGURE 7.1: Conventional TSC techniques (left) usually only provide class-level pre-
dictive probabilities. In addition, our proposed method (MILLET, right) also highlights
class-conditional discriminatory signatures that influence the predicted class. In the
heatmap, green regions indicate support for the predicted class, red regions refute the
predicted class, and darker regions are more influential.

MIL is well-suited to this problem setting since it was developed for weakly supervised
contexts, can be learnt in an end-to-end framework, and boasts many successes across
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several domains. Furthermore, MIL has the same label specificity as TSC: labels are
given at the bag level, but not at the MIL instance level. To explore the intersection of
these two areas, we propose plug-and-play concepts that are adapted from MIL and
applied to existing TSC approaches (in this work, DL models1). Furthermore, to aid in
our evaluation of the interpretability of these new methods, we introduce a new
synthetic TSC dataset, WebTraffic, where the locations of the class-conditional
discriminatory signatures within time series are known. The time series shown in
Figure 7.1 is sampled from this dataset.

Our key contributions are as follows:

1. We propose MILLET, a TSC framework that utilises MIL to provide inherent
interpretability without compromising predictive performance (even improving it
in some cases).

2. We design plug-and-play MIL methods for TSC within MILLET.

3. We propose a new method of MIL aggregation, Conjunctive pooling, that
outperforms existing pooling methods in our TSC experiments.

4. We propose and evaluate 12 novel MILLET models on 85 univariate datasets from
the UCR TSC Archive (Dau et al., 2019), as well as a novel synthetic dataset that
facilitates better evaluation of TSC interpretability.

The remainder of this chapter is organised as follows. We first cover relevant
background and related work (Section 7.2), and then propose our novel methodology
for TSC using MIL (Section 7.3). This is followed by two sets of experiments: the first on
a synthetic dataset (Section 7.4), and the second on 85 benchmark datasets (Section 7.5).
Finally, the chapter ends with a discussion (Section 7.6) and conclusion (Section 7.7).

7.2 Background and Related Work

In this section, we outline the relevant background for our work. We first briefly
introduce TSC (Section 7.2.1) and MIL (Section 7.2.2), and then give an overview of
existing interpretability approaches for TSC (Section 7.2.3).

7.2.1 Time Series Classification

While a range of TSC methods exist, in this work we apply MIL to DL TSC approaches.
Methods in this family are effective and widely used (Foumani et al., 2023; Ismail Fawaz

1While we focus on DL TSC in this work, we envision that our MILLET framework can be applied to
other TSC approaches in the future, such as the ROCKET family of methods (Dempster et al., 2020, 2023).
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et al., 2019); popular methods include Fully Convolutional Networks (FCN), Residual
Networks (ResNet), and InceptionTime (Ismail Fawaz et al., 2020; Wang et al., 2017).
Indeed, a recent TSC survey, Bake Off Redux (Middlehurst et al., 2024), found
InceptionTime to be competitive with State-Of-The-Art (SOTA) approaches such as the
ensemble method HIVE-COTE 2 (HC2; Middlehurst et al., 2021) and the hybrid
dictionary-convolutional method Hydra-MultiRocket (Hydra-MR; Dempster et al., 2023).
Although the application of Matrix Profile for TSC also yields inherent interpretability
(Guidotti and D’Onofrio, 2021; Yeh et al., 2017), we choose to focus on DL approaches
due to their popularity, strong performance, and scope for improvement (Middlehurst
et al., 2024).

7.2.2 Multiple Instance Learning

In its standard assumption, MIL is a binary classification problem: a bag is positive if
and only if at least one of its instances is positive (Dietterich et al., 1997). As we are
designing MILLET to be a general and widely applicable TSC approach, we do not
constrain it to any specific MIL assumption except that there are temporal relationships,
i.e., the order of instances within bags matters (Early et al., 2022a; Wang et al., 2020a,
Chapter 6). As we explore in Section 7.3.5, this allows us to use positional encodings in
our MILLET methods. Although the application of MIL to TSC has been explored prior
to this study, earlier work focused on domain-specific problems such as intensive care
in medicine and human activity recognition (Dennis et al., 2018; Janakiraman, 2018;
Poyiadzi et al., 2018; Poyiadzis et al., 2019; Shanmugam et al., 2019). Furthermore,
existing work considers MIL as its own unique approach separate from existing TSC
methods. The work most closely related to ours is Zhu et al. (2021), which proposes an
uncertainty-aware MIL TSC framework specifically designed for long time series
(marine vessel tracking), but without the generality and plug-and-play nature of MILLET.
Therefore, to the best of our knowledge, our work with MILLET is the first to apply MIL
to TSC in a more general sense and to do so across an extensive variety of domains.

7.2.3 Interpretability

TSC interpretability methods can be grouped into several categories. Following the
taxonomy of Theissler et al. (2022), we focus on class-wise time point attribution
(saliency maps), i.e., identifying the discriminatory time points in a time series that
support and refute different classes. Our proposed method, MILLET, is one such method.
Time point-based interpretations are a form of local interpretation, where model
decision-making is explained for individual time series (Molnar, 2020). It also aligns
with MIL interpretability as proposed by Early et al. (2022c, Chapter 4): which are the
key MIL instances in a bag, and what outcomes do they support/refute? MILLET
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facilitates interpretability by inherently enhancing existing TSC approaches such that
they provide interpretations alongside their predictions with a single forward pass of
the model.

There are a range of existing interpretability methods that are not specific to TSC.
Comparable methods to MILLET (i.e., those that provide time point-based
interpretations), include Local Interpretable Model-agnostic Explanations (LIME)
(Ribeiro et al., 2016a), Shapley Additive Explanations (SHAP) (Lundberg and Lee, 2017),
Occlusion Sensitivity (Zeiler and Fergus, 2014), and MILLI (Early et al., 2022c,
Chapter 4). However, these are often very expensive to run (requiring 100+ forward
passes per interpretation). To overcome the computational cost of these methods, an
alternative set of approaches is subsequence-based techniques, which provide
interpretations at a lower granularity. However, we do not consider these comparable
approaches because they do not produce time point-based interpretations, i.e., we
compare against interpretability methods with the same level of granularity as MILLET.

TSC-specific interpretability approaches have also been proposed in prior work. Many
of these have one or both of the issues mentioned above: they are expensive to compute
and/or reduce computational complexity by grouping time points together (so are
subsequence, not time point interpretability methods). This includes time series-specific
SHAP approaches such as TimeSHAP (Bento et al., 2021) and WindowSHAP (Nayebi
et al., 2023), and time series-specific LIME approaches such as LIMESegements (Sivill
and Flach, 2022). Further methods include Dynamask (Crabbé and Van Der Schaar,
2021), WinIT (Leung et al., 2022), and TimeX (Queen et al., 2023).

Based on the requirements outlined above, we choose two interpretability methods to
compare MILLET against. The first is Class Activation Mapping (CAM) (Wang et al.,
2017; Zhou et al., 2016), which uses the model’s weights to identify discriminatory time
points. It is comparable to MILLET as it produces interpretations with only a single
forward pass of the model. The second is SHAP, which is chosen as it does not need
careful tuning of hyperparameters for individual datasets (which other methods often
do). This means it can be easily applied to the large number of datasets used in this
work. A further piece of work that is worth mentioning is Temporal Saliency Rescaling
(Ismail et al., 2020), which has been shown to improve time point-based interpretability
methods in multivariate settings. While not applicable in this work as we only study
univariate time series, it could be applied on top of MILLET if future work extends
MILLET to multivariate settings. For reviews of existing TSC interpretability methods,
see Theissler et al. (2022) and Šimić et al. (2021).
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7.3 Methodology

To apply MIL to TSC, we propose the broad framework MILLET: Multiple Instance
Learning for Locally Explainable Time series classification. We advocate for the use of
MIL in TSC as it is a natural fit that provides inherent interpretability (explanations for
free) without requiring any additional labelling beyond that already provided by
existing TSC datasets. We first further discuss why MIL is appropriate for TSC
(Section 7.3.1), and then introduce our MILLET framework (Section 7.3.2). This is
followed by details on our approach for applying MILLET to DL methods (Section 7.3.3),
MILLET interpretability (Section 7.3.4), model design (Section 7.3.5), and evaluation
metrics (Section 7.3.6).

7.3.1 Why Multiple Instance Learning?

To answer the question of “why MIL”, we first consider the requirements for
interpreting TSC models. Our underlying assumption is that, for a classifier to predict a
certain class for a time series, there must be one or more underlying signatures (a single
time point or a collection of time points) in the time series that the model has identified
as being indicative of the predicted class. In other words, only certain time points
within a time series are considered discriminatory by the model (those that form the
signatures), and the other time points are ignored (background time points or noise).
Note the values and position of the discriminatory time points within a time series can
differ within in a collection of time series. This could also be extended to class
refutation, where the model has learnt that certain signatures indicate that a time series
does not belong to a particular class. To this end, the objective of TSC interpretability is
then to uncover these supporting and refuting signatures, and present them as an
explanation as to why a particular class prediction has been made.

We next consider how we could train a model to find these signatures if we already
knew where and what they were, i.e., in a conventional supervised learning sense
where the signatures are labelled. In this case, we would be able to train a model to
predict a signature label from an input signature — in the simplest case this could be
predicting whether a signature is discriminatory or non-discriminatory. This model
could then be applied to an unlabelled time series and used to identify its signatures.
Effectively, this hypothetical signature model is making time point level predictions.

Unfortunately, it is very difficult to train models in the above manner. The vast majority
of time series datasets are only labelled at the time series level — no labels are provided
at the time point level, therefore the locations of signatures are unknown. While there
are several successful DL models that can learn to make time-series level predictions
from time-series level labels (e.g FCN, ResNet, InceptionTime), they are black boxes —
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they provide no inherent interpretation in the form of supporting/refuting signatures
via time point level predictions. Without time point level labels, conventional
supervised learning is unable to develop models that inherently make time point level
predictions. While post-hoc interpretability methods could be used to uncover the
signatures, they can be expensive (in the case of LIME and SHAP), or as we show in this
work, inferior to inherent interpretability. As such, we can draw a set of requirements
for a new and improved interpretable TSC approach:

1. Inherent interpretability: The model should provide time point predictions (i.e.,
signature identification) as part of its time series prediction process. This means
interpretations are gained effectively for free as a natural byproduct of time series
prediction. It also means expensive or ineffective post-hoc interpretability
approaches are not required.

2. Learn from time series labels: As stated above, TSC datasets rarely provide time
point-level labels. Therefore, the model must be able to learn something insightful
at the time point level given only time series labels.

3. Provide a unified framework: As there is a diverse range of existing TSC
methods of different families, an effective TSC interpretability approach should be
as widely applicable as possible to facilitate continued research in these different
areas. This would also mean existing bodies of research can be applied in
conjunction with the framework.

Given these requirements, we advocate for MIL as an appropriate method for an
inherently interpretable TSC framework. MIL is designed for settings with bags of
instances, where only the bags are labelled, not the instances. In a TSC setting, this
equates to having time series labels without time point labels, which is exactly what we
outlined above (and describes the vast majority of TSC datasets). Furthermore, certain
types of existing MIL approaches, for example, Instance and Additive, work by first
making a prediction for every time point, and then aggregating over these predictions
to make a time series prediction. This is inherently interpretable and facilitates
signature identification. Finally, the over-arching concept of MIL for TSC, i.e., learning
from time series labels but making both time point and time series predictions, is not
tied to any one family of Machine Learning (ML) approach.

We also consider answers to potential questions about alternative solutions:

1. Q: Why not label the signatures/time points to allow for supervised learning?
A: As discussed above, it is rare for a time series dataset to have time point labels.
It could be possible to label the signatures, for example by having medical
practitioners identify discriminatory irregular patterns in ECG data. However,
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this labelling process is very time-consuming, and in some cases would require
domain expertise, which is challenging and expensive to acquire. Furthermore, it
would then require anyone interested in applying such supervised techniques to
their own data to fully label everything at the time point level, increasing the cost
and time of developing new datasets.

2. Q: Why not label some of the signatures/time points and use a semi-supervised
approach?
A: While it might be possible to train a semi-supervised model that only requires
some of the time points to be labelled, the model is no longer end-to-end. As the
model only learns to predict at the time point level, it does not provide time series
level predictions itself. Rather, some additional process is required to take the
time point predictions and transform them into a time series prediction.
Furthermore, a semi-supervised model has no method for leveraging both the
time series labels and the partial time point labels.

3. Q: What does MIL achieve beyond methods such as attention?
A: While attention has been utilised previously in TSC, it does not provide
class-specific interpretations, only general measures of importance across all
classes. So while attention might identify signatures, it does not state which class
these signatures belong to, nor whether they are supporting or refuting.
Furthermore, attention is far less explicit than time point predictions — there is no
guarantee that attention actually reflects the underlying signatures of
decision-making, whereas in MIL the time point predictions directly determine
the time series prediction.

Given the above motivation for using MIL in TSC, in the next section, we propose our
novel MILLET framework.

7.3.2 The MILLET Framework

A TSC model within our MILLET framework has to satisfy three requirements:

Requirement 1: Time Series as MIL Bags A TSC dataset consists of time series,
where each time series X is formed of T > 1 time points: X = {x1, . . . , xT}.2 Each time
step is an h-dimensional vector, where h is the number of channels in the time series. In
this work, we focus on univariate time series (h = 1) and assume all time series in a
dataset have the same length. We consider each time series as a MIL bag, meaning each

2Following convention from MIL, we use uppercase variables to denote MIL bag / time series data and
lowercase variables to denote MIL instance / time point data. The time series length T is equivalent to the
number of instances k in general MIL.
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time point is a MIL instance.3 A time series bag can be considered a matrix X ∈ RT×h,
and each bag has an associated bag-level label Y which is the original time series label.
There is also the concept of MIL instance labels {y1, . . . , yT}, but these are not provided
for most MIL datasets (like the absence of time point labels in TSC). Framing TSC as a
MIL problem allows us to obtain interpretability by imposing the next requirement.

Requirement 2: Time Point Predictions To facilitate interpretability in our
framework, we specify that models must provide time point predictions along with
their time-series predictions. Furthermore, the time point predictions should be
inherent to the model — this makes it possible to identify which time points support
and refute different classes without having to use post-hoc methods.

Requirement 3: Temporal Ordering TSC is a sequential learning problem so we
impose a further requirement that the framework must respect the ordering of time
points. This is in contrast to classical MIL methods that assume MIL instances are iid.

7.3.3 MILLET for Deep Learning TSC: Rethinking Pooling

To demonstrate the use of MILLET, we apply it to DL TSC methods. Existing DL TSC
architectures (e.g., FCN, ResNet, and InceptionTime) mainly consist of two modules: a
Feature Extractor (FE) ψFE (we refer to these as backbones) and a classifier ψCLF. For an
input univariate time series X, ψFE produces a set of d-dimensional feature embeddings
Z ∈ RT×d = [z1, . . . , zT] (Equation 7.1). These embeddings are consolidated via
aggregation with Global Average Pooling (GAP) to give a single feature vector of length
d. This is then passed to ψCLF to produce a prediction Ŷ ∈ RC for the time series, where
C is the number of classes:

Feature Extraction: Z = ψFE
(
X
)
; (7.1)

GAP + Classification: Ŷ = ψCLF

(
1
T

T

∑
t=1

zt

)
. (7.2)

The specification of ψFE naturally satisfies Req. 1 from our MILLET framework as
discriminatory information is extracted on a time point level. Req. 3 is satisfied as long
as the DL architecture makes use of layers that respect the ordering of the time series
such as convolutional or recurrent layers. In the MIL domain, the GAP + Classification

3There is an overlap in TSC and MIL terminology: both use the term ‘instance’ but in different ways.
In MIL it denotes an element in a bag, and in TSC it refers to an entire time series (e.g., “instance-based
explanations” from Theissler et al., 2022). To avoid confusion, we use ‘time series’ to refer to entire time
series (a TSC instance) and ‘time point’ to refer to a value for a particular step in a time series (a MIL
instance).
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process (Equation 7.2) is known as mean Embedding pooling, as used in methods such
as MI-Net (Wang et al., 2018). However, this aggregation step does not inherently
produce time point class predictions, and consequently does not fit Req. 2.

To upgrade existing DL TSC methods into the MILLET framework and satisfy Req. 2, we
explore four MIL pooling methods for replacing GAP. Attention, Instance, and
Additive are inspired by existing MIL approaches, while Conjunctive is proposed in
this work. Replacing GAP in this way is plug-and-play, i.e., any TSC method using GAP
or similar pooling can easily be upgraded to one of these methods and meet the
requirements for MILLET.

Attention pooling (Ilse et al., 2018) does weighted averaging via an attention head
ψATTN :

at ∈ [0, 1] = ψATTN(zt); Ŷ = ψATTN

(
1
T

T

∑
t=1

atzt

)
. (7.3)

Instance pooling (Wang et al., 2018) makes a prediction for each time point:

ŷt ∈ RC = ψCLF(zt); Ŷ =
1
T

T

∑
t=1

ŷt. (7.4)

Additive pooling (Javed et al., 2022) is a combination of Attention and Instance:

at = ψATTN(zt); ŷt = ψCLF(atzt); Ŷ =
1
T

T

∑
t=1

ŷt. (7.5)

Conjunctive pooling is our proposed novel pooling approach, where attention and
classification are independently applied to the time point embeddings, after which the
attention values are used to scale the time point predictions. This is expected to benefit
performance as the attention and classifier heads are trained in parallel rather than
sequentially, i.e., the classifier cannot rely on the attention head to alter the time point
embeddings prior to classification, making it more robust. We use the term
Conjunctive to emphasise that, from an interpretability perspective, a discriminatory
time point must be considered important by both the attention head and the
classification head. Formally, Conjunctive is described as:

at = ψATTN(zt); ŷt = ψCLF(zt); Ŷ =
1
T

T

∑
t=1

atŷt. (7.6)

Figure 7.2 shows a schematic representation comparing these pooling approaches with
Embedding (GAP). Note there are other variations of these MIL pooling methods, such
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as replacing mean with max in Embedding and Instance, but these alternative
approaches are not explored in this work.

FIGURE 7.2: The five different MIL pooling methods used in this work. Each takes
the same input: a bag of time point embeddings Z ∈ RT×d = [z1, . . . , zT ]. While they
all produce the same overall output (a time series prediction), they produce different
interpretability outputs.

7.3.4 MILLET Deep Learning Interpretability

As a result of Requirement 2 in Section 7.3.2, we expect the models to be inherently
interpretable. For DL methods, this is achieved through the MIL pooling methods given
in Section 7.3.3 — different MIL pooling approaches provide alternative forms of
inherent interpretability. Instance performs classification before pooling (see
Equation 7.4), so it produces a set of time point predictions [ŷ1, . . . , ŷT] ∈ RT×C.
Additive and Conjunctive also make time point predictions, but include attention. To
combine these two outputs, we weight the time point predictions by the attention
scores: [a1ŷ1, . . . , aT ŷT] ∈ RT×C.

On the other hand, Attention is inherently interpretable through its attention weights
[a1, . . . , aT] ∈ [0, 1]T. These attention values can be interpreted as a measure of
importance for each time point, but unlike Instance, Additive, and Conjunctive, the
interpretability output for Attention is not class-specific (but only a general measure of
importance across all classes).
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7.3.5 MILLET Deep Learning Model Design

We design three MILLET DL models by adapting existing backbone models that use
GAP: FCN, ResNet, and InceptionTime. While extensions of these methods and other
DL approaches exist (see Foumani et al., 2023), we do not explore these as none have
been shown to outperform InceptionTime (Middlehurst et al., 2024). Nevertheless, the
MILLET framework can be applied to any generic DL TSC approach that uses GAP or
follows the high-level structure in Equation 7.2.

Replacing GAP with one of the four pooling methods in Section 7.3.3 yields a total of 12
new models. In each case, the backbone models produce feature embeddings of length
d = 128

(
Z ∈ RT×128). The models are trained end-to-end in the same manner as the

original backbone methods — we discuss additional options for training in Section 7.7.
We introduce three further enhancements:

1. Positional Encoding: As time point classification and attention are applied to
each time point independently, the position of a time point within the times series
can be utilised (with GAP, positional encoding would be lost through averaging)
— this allows for further expressivity of the ordering of time points and enforces
Req. 3 of our MILLET framework. We inject fixed sinusoidal positional encodings
(Vaswani et al., 2017) after feature extraction (see Appendix D.2.2 for more details).
Future work could investigate using learnt rather than fixed encodings. While the
convolutional layers in the deep learning backbones used in this work facilitate
relative temporal dependencies (helping to identify phase-independent features),
injecting positional encodings allows for absolute positional encoding (helping to
identify phase-dependent features). For the MIL pooling methods, our intuition is
that the use of positional encodings facilitates more accurate time point prediction
and attention scores, which benefits both interpretability and predictive
performance.

2. Replicate padding: Zero padding is used in the convolutional layers of the
backbone architectures. However, in our interpretability experiments, we found
this biased the models towards the start and end of the time series — padding
with zeros was creating a false signal in the time series. As such, we replaced zero
padding with replicate padding (padding with the boundary value) which
alleviated the start/end bias. However, we note that particular problems may
benefit from other padding strategies.

3. Dropout: To mitigate overfitting in the new pooling methods, we apply dropout
after injecting the positional encodings (p = 0.1). This is applied in all the MILLET

pooling methods; after positional encoding but before pooling and classification
(see Appendix D.2 for more details). No dropout was used in the original
backbones.
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The original InceptionTime approach is an ensemble of five identical network
architectures trained from different initialisations, where the overall output is the mean
output of the five networks. To facilitate a fair comparison, we use the same approach
for FCN, ResNet, and MILLET. See Appendix D.1 for implementation details, and
Appendix D.2 for model, training, and hyperparameter details.

7.3.6 Interpretability Evaluation Metrics

To quantitatively evaluate interpretability, we use the same process as Early et al. (2022c,
Chapter 4; redefined below for clarity). This approach uses ranking metrics, i.e., looking
at the predicted importance order rather than actual interpretation values. The two
metrics used are Area Over the Perturbation Curve to Random (AOPCR) and
Normalised Discounted Cumulative Gain at n (NDCG@n). The former is used to
evaluate without time point labels, and the latter is used to evaluate with time point
labels. Different metrics are used in existing TSC interpretability works, but these come
with their own set of disadvantages. Metrics such as Area Under the Precision
Curve (AUPC) and Area Under the Recall Curve (AURC), as used by Crabbé and Van
Der Schaar (2021); Ismail et al. (2020); Leung et al. (2022); Queen et al. (2023), are useful
in that they separate whether the identified time points are indeed discriminatory
(precision) from whether all discriminatory time points are identified (recall/coverage).
While this would be beneficial in evaluating the effect of sparsity, it does not account for
the ordering of time points in the interpretation, i.e., we want to reward the
interpretation method for placing discriminatory time points earlier in the ordering
(and punish it for placing non-discriminatory time points earlier on); this is something
that NDCG@n achieves. The mean rank metric (Leung et al., 2022) also suffers from this
issue — it is effectively an unweighted version of NDCG@n. Furthermore, AUPC and
AURC metrics require time point labels and sometimes need access to the underlying
data generation process for resampling; AOPCR does not need either. NDCG@n can be
used for our synthetic dataset, WebTraffic (Section 7.4), as we know the locations of
discriminatory time points. However, for the UCR datasets used in Section 7.5, the
discriminatory time points are unknown, therefore only AOPCR can be used. Below we
provide more details on the metrics used to evaluate interpretability.

AOPCR: Evaluation without time point labels When time point labels are not
present, the model can be evaluated via perturbation analysis. The underlying intuition
is that, given a correct ordering of time point importance in a time series, iteratively
removing the most important (discriminatory) time points should cause the model
prediction to rapidly decrease. Conversely, a random or incorrect ordering will lead to a
much slower decrease in prediction. Formally, when evaluating the interpretations
generated by a classifier F for a time series X = {x1, . . . , xT} with respect to class c, we
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first re-order the time series according to the importance scores (with the most
important time points first): OX,c = {o1, o2, . . . , oT}. Note the contents of OX,c is the
same as that of X but with a different order of instances. The perturbation metric is then
calculated by:

AOPC(OX,c) =
1

T − 1

T−1

∑
t=1

Fc(OX,c)− Fc(OX,c \ {o1, . . . , ot}). (7.7)

Note when computing Fc(OX,c) and Fc(OX,c \ {o1, . . . , ot}), the time points remain in
the same order as in X, and the positional embeddings respect the original position of
the time points. In Equation 7.7, the perturbation curve is calculated by removing
individual time points and continues until all but one time point (the least important as
assessed by the model) is left. This is expensive to compute, as a call to the model must
be made for each perturbation. To improve the efficiency of this calculation, we group
time points together into blocks equal to 5% of the total time series length, and only
perturb the time series until 50% of the time points have been removed. As such, we
only need to make 10 calls to the model per time series evaluation.

To facilitate better comparison between models, we normalise by comparing to a
random ordering. To compensate for the stochastic nature of using random orderings,
we average over several different random orderings:

AOPCR(OX,c) =
1

nRand

nRand

∑
r=1

(
AOPC(OX,c)− AOPC(OX,Rand)

)
, (7.8)

where OX,Rand is a random ordering of X and nRand is the number of random orderings.
In our experiments, nRand = 3.

NDCG@n: Evaluation with time point labels If the time point labels are known, a
perfect ordering of time point importance would have every discriminatory time point
for class c occurring at the start. If there are n discriminatory time points, we would
expect to see these in the first n places in the ordered interpretability output. The fewer
true discriminatory time points there are in the first n places, the worse the
interpretability output. Furthermore, we want to reward the model for placing
discriminatory time points earlier in the ordering (and punish it for placing
non-discriminatory time points earlier on). This can be achieved by placing a higher
weight on the start of the ordering. Formally,
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NDCG@n(OX,c) =
1

IDCG

n

∑
t=1

rel(ot)

log2(t + 1)
,

where IDCG =
n

∑
t=1

1
log2(t + 1)

,

and rel(ot) =

1 if ot is a discriminatory time point for class c,

0 otherwise.
(7.9)

7.4 Initial Case Study

7.4.1 Synthetic Dataset

To explore our MILLET concept, and to evaluate the inherent interpretability of our
models, we propose a new synthetic dataset called WebTraffic. By demonstrating daily
and weekly seasonality, it is designed to mimic trends observed in streaming and
e-commerce platforms. We inject different signatures into a collection of synthetic time
series to create ten different classes: a zeroth normal class and nine signature classes.
The signatures are partially inspired by the synthetic anomaly types proposed in
Goswami et al. (2023). The discriminatory time points are known as we can control the
location of the injected signatures. Therefore, we are able to evaluate if models can
identify both the signature (which of the ten classes) and the location of the
discriminatory time points — both can be achieved inherently by our MILLET models.
Figure 7.3 provides an example for each class in this dataset, and further details are
given below.

FIGURE 7.3: An example for each class of our WebTraffic dataset. Signatures are injected
in a single random window, with the exception of Class 1 (Spikes), which uses random
individual time points.

In WebTraffic, each time series is a week long with a sample rate of 10 minutes
(T = 60 ∗ 24 ∗ 7/10 = 1008). The training and test set are independently generated
using fixed seeds to facilitate reproducibility and are both balanced with 50 time series
per class (500 total time series for each dataset).
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To explain the synthetic time series generation process, we first introduce a new
function:

WarpedSin(a, b, p, s, x) =
a
2

sin

(
x′ − sin(x′)

s

)
+ b, where x′ = 2π(x − p). (7.10)

Parameters a, b, p, and s control amplitude, bias (intercept), phase, and skew
respectively. WarpedSin is used to generate daily seasonality in the following way:

SampleDay(aD, b, p, s, σ, t) = N (RateDay(aD, b, p, s, t), σ), (7.11)

RateDay(aD, b, p, s, t) = WarpedSin(aD, b, p + 0.55, s, t/144) (7.12)

where t ∈ [1, . . . , 1008] is the time index and σ is a parameter that controls the amount
of noise created when sampling (via a normal distribution). The daily rates provide
daily seasonality (i.e., peaks in the evening and troughs in the morning). However, to
take this further we also add weekly seasonality (i.e., more traffic at the weekends than
early in the week). To do so, we further utilise WarpedSin:

RateWeek(aW , t) = WarpedSin(aW , 1, 0.6, 2, t/1008). (7.13)

To add this weekly seasonality, we multiply the daily sampled values by the weekly rate.
Therefore, to produce a base time series, we arrive at a formula with six parameters:

SampleWeek(aD, aW , b, p, s, σ) = SampleDay(aD, b, p, s, σ, t) ∗ RateWeek(aW , t)

for t ∈ [1, . . . , 1008]. (7.14)

To generate a collection of n time series, we sample the following parameter
distributions n times (i.e., once for every time series we want to generate):

• Amplitude daily: aD ∼ UR(2, 4)

• Amplitude weekly aW ∼ UR(0.8, 1.2)

• Bias b ∼ UR(2.5, 5)

• Phase p ∼ UR(−0.05, 0.05)
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• Skew s ∼ UR(1, 3)

• Noise σ ∼ UR(2, 4)

We use a ∼ UR(b, c) to denote uniform random sampling between b and c, where a ∈ R.
Below, we also use uniform random integer sampling a′ ∼ UZ(b, c), where a′ ∈ Z.

The above generation process results in a collection of n time series, but currently, they
are all class zero (Class 0: None) as they have had no signatures injected. We describe
how we inject each of the nine signature types below. Aside from the Spikes signature
(Class 1), all signatures are injected in random windows of length l ∼ UZ(36, 288)
starting in position p ∼ UZ(0, T − l). The minimum window size of 36 corresponds to
0.25 days, and the maximum size of 288 corresponds to 2 days. In all cases, values are
clipped to be non-negative, i.e., all time points following signature injection are ≥ 0.
These methods are inspired by, but not identical to, the work of Goswami et al. (2023).
We provide an overview of the entire synthetic dataset generation process in Figure 7.4.
Exact details on the injected signatures are given below, along with focused examples in
Figure 7.5.

Class 1: Spikes Spikes are injected at random time points throughout the time series,
with probability p = 0.01 for each time point. The magnitude of a spike is drawn from
N (3.0, 2.0), and then added to or subtracted from the original time point value with
equal probability.

Class 2: Flip The randomly selected window is flipped in the time dimension.

Class 3: Skew A skew is applied to the time points in the randomly selected window.
A skew amount is first sampled from UR(0.25, 0.45), which is then added to or
subtracted from 0.5 with equal probability. This gives a new skew value
w ∈ [0.05, 0.25] ∪ [0.75, 0.95]. The random window is then interpolated such that the
value at the midpoint is now located at time point ⌊w ∗ l⌋ within the window, i.e.,
stretching the time series on one side and compressing it on the other.

Class 4: Noise Noise is added to the random window. The amount of noise is first
sampled from σNoise ∼ UR(0.5, 1.0). Then, for each time point in the selected window,
noise is added according to N (0, σNoise).

Class 5: Cutoff A cutoff value is sampled from c ∼ UR(0.0, 0.2) The values in the
random window are then set to N (c, 0.1).
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FIGURE 7.4: An overview of our WebTraffic synthetic dataset generation. From top to
bottom: daily seasonality rate, daily seasonality with sampled noise, weekly seasonality
rate, base time series with daily and weekly seasonality, and final time series with
signatures injected into the base time series.

Class 6: Average This signature is the opposite of noise injection, i.e., applying
smoothing to the values in the random window. This is achieved through applying a
moving average with a window size sampled from UZ(5, 10).

Class 7: Wander A linear trend is applied to values in the random window. The trend
linearly transitions from 0 to UR(2.0, 3.0), and is then added to or subtracted from the
values in the window with equal probability.

Class 8: Peak A smooth peak is created from the probability density function (PDF) of
N (0, 1) from -5 to 5, and then the values are multiplied by a scalar sampled from
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FIGURE 7.5: Examples of injected signatures. Each example focuses on the window in
which the signatures are injected (i.e., omitting the rest of the time series), and windows
are set to a fixed length of 288 (the maximum length when selecting random windows)
to aid visualisation.

UR(1.5, 2.5). Values in the random window are then multiplied by the values of the
peak, creating a smooth transition from the existing time series.

Class 9: Trough The same method to generate the Peak signatures is used to generate
a trough, but the PDF values are instead multiplied by UR(−2.5,−1.5) (same scalar
sample range but negative).

Given this WebTraffic dataset, in the next section, we use it to analyse both the predictive
performance and interpretability of MILLET.

7.4.2 WebTraffic Results

We compare the four proposed MIL pooling approaches for MILLET with GAP on our
WebTraffic dataset. Each pooling method is applied to the FCN, ResNet, and
InceptionTime backbones. We conduct five training repeats of each model, starting
from different network initialisations, and then ensemble them into a single model.
Tables 7.1, 7.2, and 7.3 give results on accuracy, Area Under the Receiver Operating
Characteristic (AUROC), and loss respectively. We find that MILLET improves accuracy
averaged across all backbones from 0.850 to up to 0.874, with a maximum accuracy of
0.940 for Conjunctive InceptionTime.

Table 7.4 shows the interpretability results for WebTraffic across all backbones and
pooling methods. In this evaluation, we compare to baselines CAM (applied to the
original GAP models) and SHAP (applied to all models, see Appendix D.3). CAM is a
lightweight post-hoc interpretability method (but not intrinsically part of the model
output unlike our MILLET interpretations). SHAP is much more expensive to run than
CAM or MILLET as it has to make repeated forward passes of the model. In this case, we
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TABLE 7.1: WebTraffic accuracy.

FCN RNet ITime Mean

GAP 0.756 0.860 0.934 0.850
Attention 0.820 0.866 0.936 0.874
Instance 0.782 0.862 0.938 0.861
Additive 0.814 0.858 0.940 0.871
Conjunctive 0.818 0.850 0.940 0.869

TABLE 7.2: WebTraffic AUROC.

FCN RNet ITime Mean

GAP 0.961 0.982 0.997 0.980
Attention 0.973 0.984 0.997 0.984
Instance 0.962 0.982 0.997 0.980
Additive 0.973 0.984 0.997 0.984
Conjunctive 0.973 0.984 0.996 0.985

TABLE 7.3: WebTraffic loss.

FCN ResNet ITime Mean

GAP 0.939 0.633 0.268 0.614
Attention 0.863 0.701 0.279 0.614
Instance 0.871 0.709 0.257 0.612
Additive 0.882 0.678 0.252 0.604
Conjunctive 0.866 0.638 0.277 0.594

use SHAP with 500 samples, meaning it is 500 times more expensive than MILLET. In
actuality, we find MILLET is over 800 times faster than SHAP (see Section 7.6.3).

SHAP performs particularly poorly, especially considering it is so much more expensive
to run. Due to the exponential number of possible coalitions, SHAP struggles with the
large number of time points. In some cases, it even has a negative AOPCR score,
meaning its explanations are worse than random. For each backbone, MILLET has the
best AOPCR and NDCG@n performance. The exception is NDCG@n for CAM on
InceptionTime, where CAM is better (despite MILLET having a better AOPCR score).
This is likely due to the sparsity of MILLET explanations: as shown for the Cutoff and
Peak examples in Figure 7.6, MILLET produces interpretations that may not achieve full
coverage of the discriminatory regions. While sparsity is beneficial for AOPCR (fewer
time points need to be removed to decay the prediction), it can reduce NDCG@n as
some discriminatory time points may not be identified (for example those in the middle
of the Cutoff region). Finally, the best performance for each backbone comes from one
of MILLET Instance, Additive, or Conjunctive. Attention is consistently worse than
the other methods as it does not make class-specific explanations.

In Figure 7.6 we give example interpretations for Conjunctive InceptionTime; the
best-performing model by accuracy. The model is able to identify the correct
discriminatory regions for the different classes but focuses on certain parts of the
different signatures. For example, for the Spikes class, the model identifies regions
surrounding the individual spike time points, and for the Cutoff class, the model
mainly identifies the start and end of the discriminatory region. This demonstrates how
our interpretability outputs are not only able to convey where the discriminatory
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TABLE 7.4: Interpretability performance (AOPCR / NDCG@n) on our WebTraffic
dataset. Results are generated using the ensembled versions of the models.

FCN ResNet InceptionTime Mean

CAM 12.780 / 0.532 20.995 / 0.582 12.470 / 0.707 15.415 / 0.607

SHAP - Attention 1.507 / 0.271 -3.293 / 0.250 -5.376 / 0.249 -2.387 / 0.257
SHAP - Instance 1.977 / 0.283 -0.035 / 0.257 -4.020 / 0.259 -0.692 / 0.266
SHAP - Additive 0.900 / 0.270 -1.077 / 0.250 -5.952 / 0.249 -2.043 / 0.256
SHAP - Conjunctive 0.987 / 0.267 -0.552 / 0.257 -5.359 / 0.246 -1.641 / 0.257

SHAP Best 1.977 / 0.283 -0.035 / 0.257 -4.020 / 0.259 -0.692 / 0.266

MILLET - Attention 4.780 / 0.425 6.382 / 0.380 -1.597 / 0.420 3.188 / 0.408
MILLET - Instance 12.841 / 0.540 23.090 / 0.584 13.192 / 0.704 16.374 / 0.609
MILLET - Additive 14.522 / 0.532 24.880 / 0.589 10.274 / 0.684 16.559 / 0.602
MILLET - Conjunctive 13.221 / 0.539 24.597 / 0.591 11.100 / 0.694 16.306 / 0.608

MILLET Best 14.522 / 0.540 24.880 / 0.591 13.192 / 0.704 17.531 / 0.612

regions are located but also provide insight into the model’s decision-making process,
providing transparency.

FIGURE 7.6: Interpretations for Conjunctive InceptionTime on our WebTraffic dataset.
Top: Time series with the known discriminatory time points highlighted.
Middle: Interpretability scores for each time point with respect to the target class.
Bottom: Interpretability scores heatmap as in Figure 7.1.

To further investigate the interpretability performance of Conjunctive InceptionTime,
we conducted additional analysis on its WebTraffic performance. We found its accuracy
was between 0.86 and 1.0 for nine of the ten classes, showing it had a consistently strong
performance in identifying most signatures. However, for class 8 (Peak), its accuracy
dropped to 0.76 — a rather large drop relative to the other classes. Class 0 (None) was
the prediction that was made for the majority of the incorrect predictions for class 8, i.e.,
the model failed to identify the peak and did not find any other class signatures, so
predicted the None class. We used the interpretability facilitated by MILLET to
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investigate what was happening with these incorrect predictions. We found that, in
some cases, the model was able to identify the correct region (positive predictions for
class 8 at the location of the peak) despite its final prediction being incorrect. Examples
are shown in Figure 7.7 — observe how the middle example shows support for class 8
(Peak) in the correct region despite the model getting the overall prediction incorrect.
This identification of incorrect predictions and the ability to analyse the model’s
decision-making in more detail further highlights how MILLET can be useful in
production.

FIGURE 7.7: False negative investigation for Conjunctive InceptionTime on the Web-
Traffic dataset. For the final example, the deviation from the original time series is
very small and centred near an existing peak, which makes correct identification more
difficult.
Top: The signature time series for an example from class 8 (Peak), where the original
time series and signature region are shown.
Middle: The model’s interpretation for class 0 (None).
Bottom: The model’s interpretations for class 8 (Peak).

7.5 UCR Results

We evaluate MILLET on the UCR TSC Archive (Dau et al., 2019) — widely
acknowledged as a definitive TSC benchmark spanning diverse domains across 85
univariate datasets (see Appendix D.4). Below are results for predictive performance,
followed by results for interpretability.

7.5.1 Predictive Performance

We first compare the performance of the four MIL pooling methods with that of GAP
across the three different backbones used in this work. This is used to evaluate the
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change in predictive performance when using MILLET in a wide variety of different
domains and determine which of the pooling methods proposed in Section 7.3.3 is best.
It also facilitates insight into the applicability of each pooling method with different
backbones. Table 7.5 shows that Conjunctive gives the best performance averaged
across all backbones, and that the trend for MILLET is the same as the trend for GAP
with respect to the choice of backbone, i.e., InceptionTime > ResNet > FCN. As such, it
is unsurprising that Conjunctive InceptionTime has the best performance for both
accuracy and balanced accuracy.

TABLE 7.5: MILLET predictive performance (accuracy / balanced accuracy) on 85 UCR
datasets.

FCN ResNet InceptionTime Mean

GAP 0.828 / 0.804 0.843 / 0.819 0.853 / 0.832 0.841 / 0.818
Attention 0.781 / 0.754 0.846 / 0.823 0.855 / 0.832 0.827 / 0.803
Instance 0.829 / 0.804 0.842 / 0.818 0.855 / 0.833 0.842 / 0.819
Additive 0.835 / 0.810 0.845 / 0.822 0.855 / 0.832 0.845 / 0.822
Conjunctive 0.838 / 0.814 0.845 / 0.822 0.856 / 0.834 0.846 / 0.823

Given this result, we then compare the performance of MILLET with current SOTA
methods, which is intended to provide better context for the performance of our newly
proposed models. We select the top performing method from seven families of TSC
approaches as outlined by Middlehurst et al. (2024), the top two of which are HC2 and
Hydra-MR.4

In Figure 7.8 we give a critical difference (CD) diagram (Demšar, 2006) for balanced
accuracy.5 We find that 1) using Conjunctive improves performance in all cases, and 2)
Conjunctive InceptionTime is comparable to the SOTA of HC2 and Hydra-MR.
Although it has marginally better performance, strong claims cannot be made as the
difference is not statistically significant.

We also perform a further direct comparison against the best two SOTA results, HC2 and
Hydra-MR, allowing us to evaluate how many and on which datasets MILLET performs
better. As shown in Figure 7.9, we find that our best-performing MILLET approach
(Conjunctive InceptionTime) wins or draws on 48/85 (56.5%), 49/85 (57.7%), and
52/85 (61.2%) UCR datasets against InceptionTime, HC2, and Hydra-MR respectively.

Complete results are given in Table 7.6. While Conjunctive InceptionTime is
marginally the best approach on balanced accuracy (outperforming the HC2 and
Hydra-MR SOTA methods, but not with statistical significance), it is not quite as strong

4SOTA results obtained from Bake Off Redux using column zero of the results files (original train/test
split). We did not use the FCN, ResNet, or InceptionTime results as we trained our own versions of these
models.

5Based on the implementation from https://github.com/hfawaz/cd-diagram using Wilcoxon-Holm
post-hoc analysis.

https://github.com/time-series-machine-learning/tsml-eval/tree/main/tsml_eval/publications/y2023/tsc_bakeoff/results
https://github.com/hfawaz/cd-diagram
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FIGURE 7.8: Critical difference diagram comparing Conjunctive MILLET methods with
SOTA.

FIGURE 7.9: Head-to-head comparison of our best MILLET method against SOTA. Num-
bers in the bottom left indicate the number of wins / draws / losses for Conjunctive
InceptionTime. Datasets with the greatest positive and negative differences are indi-
cated.

on the other metrics. However, it remains competitive, and for each backbone, the use
of MILLET improves performance across all metrics.

7.5.2 Interpretability Performance

To understand the interpretability of our MILLET methods on a wide variety of datasets,
we evaluate their interpretability on the same set of 85 UCR datasets used in
Section 7.5.1. As the UCR datasets do not have time point labels, we can only evaluate
model interpretability using AOPCR. Averaged across all backbones, we find that
MILLET has a best AOPCR of 6.00, compared to 5.71 achieved by GAP. Of the
individual pooling methods within MILLET, we find that Conjunctive has the best
interpretability performance. Attention performs poorly — this is expected as it does
not create class-specific interpretations, but only general measures of importance;
something that was also identified in general MIL interpretability by Early et al. (2022c,
Chapter 4). In Table 7.7 we give MILLET interpretability results on the UCR datasets for
both individual and ensemble models. Interestingly, we find that MILLET performs well
in all cases except the ensemble ResNet models. In this case, its performance drops
significantly compared to the individual ResNet performance — something that does
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TABLE 7.6: Results for MILLET against baselines on 85 UCR datasets. Results are given
in the form mean / rank / number of wins.

Method Accuracy ↑ Bal. Accuracy ↑ AUROC ↑ NLL ↓

Hydra-MR 0.857/8.688/19 0.831/9.994/17 0.875/18.647/7 0.953/11.194/9
FreshPRINCE 0.833/12.841/14 0.801/13.824/13 0.944/10.206/19 0.714/10.800/11
PF 0.821/14.729/8 0.795/15.000/6 0.924/12.141/14 0.709/10.906/4
RDST 0.850/10.729/13 0.822/11.529/11 0.870/19.165/6 0.997/12.612/9
RSTSF 0.842/12.382/12 0.810/13.835/10 0.945/9.835/22 0.723/11.212/8
WEASEL-D 0.850/10.376/17 0.823/11.535/13 0.871/19.559/6 0.999/12.288/7
HC2 0.860/7.988/20 0.830/9.353/17 0.950/6.006/42 0.607/8.388/14

FCN 0.828/15.053/6 0.804/14.512/6 0.929/13.818/13 1.038/11.529/3
Attn. FCN 0.781/14.929/6 0.754/14.547/5 0.927/13.029/12 1.194/13.082/2
Ins. FCN 0.829/14.653/7 0.804/14.376/8 0.930/13.353/18 1.023/10.412/3
Add. FCN 0.835/13.547/5 0.810/13.100/5 0.933/11.594/14 0.994/10.247/3
Conj. FCN 0.838/12.624/6 0.814/12.247/6 0.934/11.012/16 0.973/9.635/3

ResNet 0.843/11.741/7 0.819/11.271/6 0.937/10.559/18 1.091/13.024/0
Attn. ResNet 0.846/11.400/8 0.823/10.671/9 0.939/9.888/13 1.051/12.188/1
Ins. ResNet 0.842/11.918/10 0.818/11.653/9 0.936/10.394/17 1.071/12.553/2
Add. ResNet 0.845/11.147/10 0.822/10.500/9 0.936/10.282/14 1.073/13.082/0
Conj. ResNet 0.845/11.335/10 0.822/10.806/10 0.939/9.329/15 1.035/12.176/1

ITime 0.853/9.724/16 0.832/8.965/15 0.939/9.500/24 1.078/11.571/7
Attn. ITime 0.855/9.512/10 0.832/9.018/11 0.940/8.876/20 1.069/11.618/3
Ins. ITime 0.855/9.471/16 0.833/9.053/16 0.940/8.406/25 1.050/10.929/5
Add. ITime 0.855/9.235/11 0.832/8.729/12 0.940/8.394/21 1.067/11.488/3
Conj. ITime 0.856/8.976/15 0.834/8.482/17 0.939/9.006/22 1.085/12.065/4

not happen for the other backbones. We observe something similar in our ablation
study, see Section 7.6.4.

TABLE 7.7: MILLET AOPCR interpretability performance (individual / ensemble) on 85
UCR datasets. The best results over all MILLET models are given for reference.

FCN ResNet InceptionTime Mean

GAP 6.518 / 6.534 6.341 / 6.445 3.392 / 4.144 5.417 / 5.707
Attention -0.023 / 0.474 0.620 / 1.513 -0.909 / -0.936 -0.104 / 0.351
Instance 6.868 / 6.925 6.338 / 5.903 4.260 / 3.973 5.822 / 5.600
Additive 6.443 / 6.298 6.526 / 5.871 4.963 / 5.083 5.977 / 5.751
Conjunctive 6.361 / 6.498 6.438 / 6.006 4.553 / 4.764 5.784 / 5.756

MILLET Best 6.868 / 6.925 6.526 / 6.006 4.963 / 5.083 6.119 / 6.004

In Figure 7.10 we observe a trade-off between interpretability and prediction, something
we believe is insightful for model selection in practice. As backbone complexity
increases, predictive performance increases while interpretability decreases.6 The
Pareto front shows MILLET dominates GAP for FCN and InceptionTime, but not ResNet.
As stated above, MILLET gives better interpretability than GAP for individual ResNet
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models, but struggles with the ensemble ResNet models. Out of the MILLET pooling
approaches, we observe that only Conjunctive is never dominated (i.e., it lies on the
Pareto front for all three backbones), and Attention is dominated in all cases.

FIGURE 7.10: The interpretability-predictive performance trade-off on the 85 UCR
datasets used in this work.

Figure 7.11 compares interpretations for LargeKitchenAppliances; a UCR dataset for
identifying household electric appliances (Washing Machine, Tumble Dryer, or
Dishwasher) from electricity usage. From the MILLET interpretability outputs, we
identify that the model has learnt different signatures for each class: long periods of
usage just above zero indicate Washing Machine, spikes above five indicate Tumble
Dryer, and prolonged usage at just below five indicates Dishwasher. The Washing
Machine example contains short spikes above five but MILLET identifies these as
refuting the prediction, suggesting the model does not relate these spikes with the
Washing Machine class. SHAP provides very noisy interpretations and does not show
strong performance on the perturbation curves. Similar to our findings for WebTraffic
(Section 7.4.2), MILLET provides sparser explanations than CAM, i.e., focusing on
smaller regions and returning fewer discriminatory time points, which is helpful when
explaining longer time series.

7.6 Discussion

In this section, we provide additional analysis of MILLET. We first examine performance
by dataset properties such as dataset imbalance and time series length in Section 7.6.1.
We then provide results for a model variance study in Section 7.6.2, followed by run
time analysis in Section 7.6.3. Finally, in Section 7.6.4 we conducted an ablation study to
examine the different components of MILLET in greater detail.

6InceptionTime is the most complex backbone, followed by ResNet, and then FCN is the simplest.
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FIGURE 7.11: Interpretations on the LargeKitchenAppliances UCR dataset.
Left: Original time series.
Middle: Interpretability scores heatmap for CAM, SHAP, and MILLET as Figure 7.1.
Right: Perturbation curves showing the rate at which the model prediction decays
when time points are removed following the orderings proposed by the different
interpretability methods.

7.6.1 Performance by Dataset Properties

As discussed in Section 7.5.1, Conjunctive InceptionTime had the strongest
performance on balanced accuracy when evaluated over 85 UCR datasets
(outperforming SOTA methods such as HC2 and Hydra-MR). To investigate whether this
improvement is due to better performance on imbalanced datasets, we assessed
balanced accuracy with respect to test dataset imbalance. To measure the imbalance of a
dataset, we use normalised Shannon entropy:

Dataset Balance = − 1
log C

C−1

∑
c=0

nc

n
log

nc

n
, (7.15)

where C is the number of classes, nc is the number of time series for class c, and n is the
total number of time series in the dataset

(
∑C−1

c=0 nc = n
)
. This gives a score of dataset

balance between 0 and 1, where 1 is perfectly balanced (equal number of time series per
class) and values close to 0 indicate high levels of imbalance. We used a threshold of 0.9
to identify imbalanced datasets, and provide comparisons of Conjunctive
InceptionTime with GAP InceptionTime, HC2, and Hydra-MR on these datasets in
Figure 7.12.

From these results, we identify that MILLET has better performance than the SOTA
methods when there is a high (test) dataset imbalance. It wins on 8/13, 9/13, and 9/13
datasets against GAP InceptionTime, HC2, and Hydra-MR respectively, and improves
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FIGURE 7.12: The effect of dataset imbalance on MILLET (Conjunctive InceptionTime)
compared with GAP InceptionTime (left), HC2 (middle), and Hydra-MR (right).
Top: Balanced accuracy on the imbalanced datasets for MILLET and each comparative
method.
Bottom: The gain in balanced accuracy on the imbalanced datasets when using MILLET.
Numbers indicate MILLET’s win/draw/loss and total improvement in balanced accu-
racy on these 13 datasets.

balanced accuracy by up to 7.4%. This demonstrates MILLET is more robust to dataset
imbalance than the other methods, potentially because it has to make timestep
predictions. Note this is without any specific focus on optimising for class imbalance,
e.g., weighted cross entropy loss could be used during training to further improve
performance on imbalanced datasets.

Using the UCR results, we now compare performance across time series length and the
number of training time series. Figure Figure 7.13 shows the average balanced accuracy
rank on different partitions of the UCR datasets for HC2, Hydra-MR, InceptionTime, and
Conjunctive InceptionTime. The results are relatively consistent across different time
series lengths. However, for the number of training time series, we see that
Conjunctive InceptionTime is worse than GAP InceptionTime for smaller datasets,
but excels on larger datasets.

FIGURE 7.13: Comparison of Conjunctive InceptionTime against GAP, HC2, and
Hydra-MR for two dataset properties. Bin ranges are chosen to give approximately equal
bin sizes.
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7.6.2 Model Variance Study

As noted by Middlehurst et al. (2024), while InceptionTime performs well overall, it
often performs terribly on certain datasets, i.e., it has high variance in its predictive
performance across different datasets. In Figure 7.14, we show that MILLET does aid in
reducing this variance while improving overall performance. Notably, Conjunctive
InceptionTime has lower variance than HC2 and Hydra-MR.

FIGURE 7.14: Evaluation of model variance with respect to median accuracy. Models
are ordered from left to right by total variance.

7.6.3 Run Time Analysis

Below we analyse how MILLET increases the complexity of the original backbone
models. We first compare the number of model parameters (Section 7.6.3.1) for different
backbone and pooling combinations applied to the UCR Fish dataset, which is chosen
as it is relatively central in the distribution of dataset statistics (175 training time series,
463 time points per time series, and 7 classes). We then compare the training and
inference times on this same dataset (Section 7.6.3.2). Finally, we calculate the time
complexity of the different pooling approaches and assess how they scale with respect
to the number of timesteps and the number of classes (Section 7.6.3.3).

7.6.3.1 Number of Parameters

In Table 7.8, we detail the number of model parameters for the different backbones and
aggregation approaches on Fish. Instance has the same number of parameters as GAP
as the only change in the aggregation process is to swap the order in which pooling and
classification are applied. Similarly, Attention, Additive, and Conjunctive all have
the same number of parameters as each other, as they all include the same attention
head (just applied in different ways; see Tables D.2, D.4, and D.5). Including this
attention head only leads to an increase of approximately 0.4% in the number of
parameters. Note these exact values will change for datasets with different numbers of
classes, but the number of additional parameters for the attention head will remain the
same.
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TABLE 7.8: Number of model parameters for Fish. Percentages indicate the relative
increase in parameters from the GAP model.

Pooling FCN ResNet InceptionTime

GAP 265.6K 504.9K 422.3K
Attention 266.6K (+0.4%) 505.9K (+0.2%) 423.3K (+0.2%)
Instance 265.6K (+0.0%) 504.9K (+0.0%) 422.3K (+0.0%)
Additive 266.6K (+0.4%) 505.9K (+0.2%) 423.3K (+0.2%)
Conjunctive 266.6K (+0.4%) 505.9K (+0.2%) 423.3K (+0.2%)

7.6.3.2 Training/inference Time

In Table 7.9, we compare model training and inference times for Fish, and also include
how long SHAP takes to run for these models. Due to the additional complexity of these
methods (e.g., making time point predictions, applying attention, and using positional
embeddings), the training times increase by up to 6%. Similarly, inference time
increases by up to 7.5%. For SHAP, generating a single explanation takes 6+ seconds
compared to the MILLET explanations which are generated as part of the inference step.
Using Conjunctive as an example, SHAP is over 800 times slower than MILLET.

TABLE 7.9: Run time (wall clock) analysis results using InceptionTime on UCR Fish.
Percentages following the MILLET methods give the increase in time relative to the
backbone GAP model. Note inference time is given in milliseconds but SHAP is given
in seconds.

Model Train (seconds) Inference (milliseconds) SHAP (seconds)

GAP 565 ± 2 7.50 ± 0.02 6.21 ± 0.03
Attention 597 ± 1 (+5.7%) 8.02 ± 0.02 (+6.9%) 6.53 ± 0.01 (+5.2%)
Instance 582 ± 1 (+3.0%) 7.75 ± 0.01 (+3.3%) 6.38 ± 0.02 (+2.6%)
Additive 599 ± 1 (+6.0%) 8.06 ± 0.01 (+7.5%) 6.51 ± 0.02 (+4.8%)
Conjunctive 599 ± 1 (+6.0%) 8.05 ± 0.01 (+7.3%) 6.51 ± 0.02 (+4.8%)

7.6.3.3 Time Complexity Analysis

To provide a more thorough theoretical analysis, we give results for the number of real
multiplications in the pooling methods (Freire et al., 2022). We focus solely on the
pooling methods, omitting the computation of the backbone (as it is independent of the
choice of pooling method). We also omit the computation of activation functions and
other non-linear operations. Results are given for single inputs (no batching) and ignore
possible underlying optimisation/parallelisation of functions. We first define the
number of real multiplications for common functions of the pooling methods:
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• Feed-forward layer: T ∗ d ∗ o, where T is the number of timesteps, d is the input
size (128 in this work), and o is the output size (based on Shah and Bhavsar, 2022).

• Attention head consisting of two layers: T ∗ d ∗ a + T ∗ a, where a is the size of the
hidden layer in the attention head (8 in this work). This is consistent for the
architectures that use attention (Attention, Additive, and Conjunctive).

• Weight or average a list of tensors: n ∗ l, where n is the number of tensors and l is
the length of each tensor.

Given these definitions, we calculate the overall number of multiplications for each
pooling method. We provide results in Table 7.10 and visualisation in Figure 7.15. We
make several observations:

• Attention has the best scaling with respect to time series length T and the
number of classes C. However, it remains a poor choice overall due to its poor
interpretability performance compared to other methods.

• GAP + CAM and Instance are the next fastest pooling methods. Instance is
more efficient than GAP + CAM when T ∗ C < d ∗ (T + C). In this work, as
d = 128, Instance is marginally quicker than GAP + CAM.

• Additive and Conjunctive are the two slowest methods due to the additional
overhead of applying attention and also making instance predictions, but the
margin between them and GAP + CAM / Instance is not as large as one might
expect. This is due to the small hidden layer size in the attention head (a = 8).
Conjunctive is more efficient than Additive when C < d, which is true in all
cases in this work as d = 128.

• In general, Conjunctive is the best choice when computational cost is less
important than predictive performance. If faster computation is required, or if the
number of timesteps or the number of classes is very large, Instance becomes a
better choice.

7.6.4 Ablation Study

Our MILLET models make several improvements over the GAP backbones: MIL pooling,
positional encodings, replicate padding, and dropout (Section 7.3.5). To understand
where the gains in performance over GAP come from, we conduct an ablation study. To
do so, we run additional model training runs, starting with the original backbone
models and incrementally adding MILLET components in the order: MIL pooling,
positional encoding, replicate padding, dropout, and ensembling. The final stage
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TABLE 7.10: Time complexity analysis (number of real multiplications) of different MIL
pooling approaches. For GAP, we include the calculation of CAM as this is required to
produce interpretations (the other pooling methods produce interpretations inherently).
We also state how the number of real multiplications scales with respect to the number
of timesteps T and the number of classes C.

Pooling Number of Real Multiplications Scale w.r.t T Scale w.r.t C

GAP + CAM d ∗ T ∗ C + d ∗ T + d ∗ C d ∗ C + d d ∗ T + d
Attention d ∗ T ∗ a + (2d + a) ∗ T + d ∗ C d ∗ a + 2d + a d
Instance d ∗ T ∗ C + T ∗ C d ∗ C + C d ∗ T + T
Additive d ∗ T ∗ C + d ∗ T ∗ a + (a + d + C) ∗ T d ∗ C + d ∗ a + a + d + C d ∗ T + T
Conjunctive d ∗ T ∗ C + d ∗ T ∗ a + (a + 2C) ∗ T d ∗ C + d ∗ a + a + 2C d ∗ T + 2 ∗ T

FIGURE 7.15: Visualisation of time complexity (number of real multiplications) for the
different pooling methods used in this work. The mean time series length and number
of classes across the 85 UCR datasets used in this work are shown (vertical dashed
lines).
Top: Time complexity as time series length increases for varying numbers of classes.
Bottom: Time complexity as the number of classes increases for various time series
lengths.

represents the full MILLET implementation. To reduce overheads in model training time
and compute resources, we focus on Conjunctive InceptionTime and conduct the
study on the three UCR datasets where MILLET shows the biggest increase in balanced
accuracy over the backbone: BeetleFly, Lightning7, and FaceAll.

In Table 7.11 we provide results of the ablation study for balanced accuracy (predictive
performance). We note that, on average, each component of MILLET improves
performance, and the complete implementation (Step 6) has the best performance. For
these datasets, the use of MIL pooling always improves performance over GAP.
Additional components then change the performance differently for the different
datasets. For example, positional encoding is very important for BeetleFly, but
replicate padding is most important for FaceAll. Interestingly, replicate padding gives
the biggest average performance increase across these datasets. However, these results
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are confounded by the order of implementation, i.e., replicate padding is only applied
after MIL pooling and positional encoding have been applied. As such, further studies
are required to untangle the contribution of each component, but that is beyond the
scope of this work.

TABLE 7.11: Ablation study on balanced accuracy. We begin with the original backbone
model (without ensembling). We then incrementally add MILLET components until we
reach the complete MILLET model. Results are given as balanced accuracy / improve-
ment, where improvement is the difference in balanced accuracy relative to the prior
row.

Model Config BeetleFly Lightning7 FaceAll Mean

1. GAP (Single) 0.870 0.819 0.910 0.867
2. + MIL 0.870 / +0.000 0.844 / +0.024 0.912 / +0.002 0.875 / +0.009
3. + Pos Enc 0.900 / +0.030 0.832 / -0.012 0.911 / -0.001 0.881 / +0.006
4. + Replicate 0.900 / +0.000 0.840 / +0.008 0.967 / +0.057 0.903 / +0.022
5. + Dropout 0.920 / +0.020 0.848 / +0.008 0.970 / +0.003 0.913 / +0.010
6. + Ensemble 0.950 / +0.030 0.863 / +0.015 0.974 / +0.003 0.929 / +0.016

In Table 7.12 we provide results of the ablation study for AOPCR (interpretability
performance). Interestingly, the addition of MIL pooling and positional encoding is
detrimental to interpretability in these examples, despite improving predictive
performance. However, interpretability improves once replicate padding and dropout
are included. Further work is required to understand if these interpretability increases
would also occur if replicate padding and dropout were applied to the GAP backbones,
or if they improve performance when applied in conjunction with MIL pooling. Finally,
we observe that interpretability decreases when ensembling the models. This is
somewhat intuitive, as the interpretations are now explaining the decision-making of
five models working in conjunction — it would be interesting to explore the difference
in interpretations when analysing each model in the ensemble separately rather than
together.

TABLE 7.12: Ablation study on AOPCR. Results are given as AOPCR / improvement.

Model Config BeetleFly Lightning7 FaceAll Mean

1. GAP (Single) 0.122 4.085 0.552 1.586
2. + MIL -0.736 / -0.858 3.985 / -0.100 0.859 / +0.306 1.369 / -0.217
3. + Pos Enc -1.978 / -1.241 3.863 / -0.121 0.633 / -0.225 0.840 / -0.529
4. + Replicate -1.926 / +0.052 4.093 / +0.230 4.023 / +3.390 2.064 / +1.224
5. + Dropout 1.242 / +3.168 4.253 / +0.159 3.997 / -0.026 3.164 / +1.101
6. + Ensemble 0.787 / -0.456 4.190 / -0.063 3.585 / -0.412 2.854 / -0.310
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7.7 Conclusion

The MILLET framework presented in this work is the first comprehensive analysis of
MIL for TSC. Its positive value is demonstrated across the 85 UCR datasets and the
WebTraffic dataset proposed in this work. MILLET provides inherent mechanisms to
localise, interpret, and explain influences on model behaviour, and improves predictive
accuracy in most cases. Through the transparent decision-making gained from MILLET,
practitioners can improve their understanding of model dynamics without the need for
expensive (and often ineffective) post-hoc explainability methods. In addition, MILLET
explanations are sparse — they distil the salient signatures of classes to a small number
of relevant sub-sequences, which is especially important for long time series. We believe
this work lays firm foundations for increased development of MIL methods in TSC and
facilitates future work:

Extension to more datasets: A more comprehensive study would be to use the full set
of 142 datasets from Bake Off Redux (Middlehurst et al., 2024) — we focused on the
original set of 85 datasets due to limited compute resources and time constraints.
Additional extensions could also include multivariate datasets and those with variable
length time series. Variable lengths would not require any methodological changes
(contrary to several other methods), but multivariate settings would require
interpretability to consider the input channel (Hsieh et al., 2021).

Application to other models: We have demonstrated the use of MILLET for DL TSC
models. Future work could extend its use to other types of TSC models, e.g., the ROCKET

(convolutional) family of methods (Dempster et al., 2020), which includes Hydra-MR.
Our proposed pooling method, Conjunctive, is also applicable in general MIL
problems beyond TSC.

Pre-training/fine-tuning: While we trained MILLET models in an end-to-end manner,
an alternative approach is to take a pre-trained GAP model, replace the GAP layers
with one of the proposed MIL pooling methods, and then fine-tune the network
(facilitating faster training). This would enable fast experimentation as the FE layers
only have to be trained once.

This chapter presented the final piece of research produced for this thesis. The next
chapter contains closing remarks, taking a retrospective look at the research as a whole
and discussing some of the remaining open challenges in interpretable MIL.
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Chapter 8

Conclusion

This thesis has explored the intersection of interpretability and Multiple Instance
Learning (MIL). It has demonstrated the broad applicability of MIL: computer vision
(Chapter 4), Earth Observation (EO) (Chapter 5), Reinforcement Learning (RL)
(Chapter 6), and Time Series Classification (TSC) (Chapter 7). Common themes occur
throughout these different areas, notably the concept of which and what interpretability
questions: which are the key instances, and what outcomes do they support/refute?
Focusing on different application domains naturally led to the development of more
methods, some of which are more widely applicable beyond the scope they are studied
in as part of this work. Below are retrospective comments on the research presented in
this thesis (Section 8.1) along with some remaining challenges in this space (Section 8.2).

8.1 Research Retrospective

Insights can be observed by considering the research presented in this thesis as a whole
and considering its impact post-publication.

The General Advantages of MIL Through this work, the advantages of MIL across
different Machine Learning (ML) paradigms has been demonstrated. We have shown it
can enhance performance, interpretability, and labelling efficiency in vision and
sequential tasks, and do so across classification, regression, and segmentation problems.
There are common elements of Deep Learning (DL) solutions in these various domains
that we have been able to target. For example, a Global Average Pooling (GAP) + Class
Activation Mapping (CAM) approach was used as a baseline in both the EO and TSC
domains. Replacing this process with a MIL-based approach was shown to be effective,
both for increasing predictive performance and for providing inherent (as opposed to
post-hoc) interpretability with little additional computational overhead. This was of
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particular note in the TSC work (Chapter 7), where the introduction of MIL was done in
a “plug-and-play” manner. There are likely further domains and ML paradigms that
could benefit from MIL-inspired approaches beyond those studied in this work.

Inherent vs Post-hoc Interpretability One outcome of the findings from the research
into model-agnostic interpretability presented in Chapter 4 was that MILLI (one of the
post-hoc methods proposed) was a strong MIL interpretability method. However, in
further research (notably in Chapter 7), MILLI was not used. This was due to MILLI’s
two main limitations: 1) despite being more sample efficient than Local Interpretable
Model-agnostic Explanations (LIME) or Shapley Additive Explanations (SHAP), it still
requires many forward passes of the model, and 2) it requires expensive tuning of
hyperparameters to produce strong results. As such, it was prohibitively expensive in
the TSC research due to the possibility of very long input time series. This highlights a
general trend: while post-hoc methods should still be preferred in some cases, notably
where there are complex interactions between instances and the data is not prohibitively
large, inherently interpretability methods are also strong candidate methods due to
their speed and potential for improving model predictive performance as well as
interpretability. Furthermore, for initial development and rapid iteration, inherently
interpretable methods are preferable.

Time Complexity Analysis The time complexity analysis conducted in Chapter 7,
particularly the findings presented in Section 7.6.3.3, are applicable beyond our TSC
applications. We focused solely on the time complexity of the pooling methods for the
real multiplication calculations, so these results hold when applying the pooling
methods to other MIL architectures and problems. As such, this research also has
implications for the use of MIL beyond TSC and can help inform model selection when
training/inference time is critical (e.g., in very large datasets).

Research Impact The research presented in the thesis has already been used in
derivative works. In particular, the work on MIL for non-Markovian Reward
Modelling (RM) detailed in Chapter 6 has been used in further research, notably Hejna
and Sadigh (2023) and Kim et al. (2023), demonstrating its usefulness in the active
research areas of RM and reinforcement learning from human feedback (RLHF).

8.2 Remaining Challenges

While individual chapters present their own set of tasks for future work, outlined below
are four open questions in interpretable MIL.
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Experiments with Human Evaluators None of the experiments in this thesis made
use of human evaluators. As explained in Section 3.1.1, we focus on interpretability
rather than explainability. This avoids the need for a social process that best
communicates the interpretations to a specific target audience. However, for using
interpretable MIL in production systems, consideration of this social process is required,
i.e., communication of underlying interpretations is an open question and one that can
only be answered through experimentation with human evaluators.

The Need for MIL Assumptions Historical MIL research explicitly defined the
problem assumptions (the relationship between instances and bag labels). This was
previously necessary to design specific methods to solve MIL problems. With the
modern DL MIL approaches, which are general learners, these assumptions become less
important with regard to model design. However, Raff and Holt (2023) recently
highlighted that these DL approaches sometimes invalidate MIL assumptions, which
has implications regarding trust: one might incorrectly assume that the models are
obeying a MIL assumption as they have a high level of performance. The need for MIL
assumptions, and their relationship to trust and interpretability, remains an open
question.

Ongoing Development of Novel Approaches Since the revitalisation of MIL neural
networks by Wang et al. (2018), the use of DL MIL methods has been developing each
year. Improvements include pooling approaches such as Attention (Ilse et al., 2018),
Additive (Javed et al., 2022), and Graph (Tu et al., 2019). Conjunctive pooling,
proposed in Chapter 7, can also be seen as extending the use of MIL neural networks in
the same way, especially given that it outperformed existing approaches. However, it
was only explored within MILLET in application to TSC — a worthwhile area of future
work would be to explore whether it is equally effective for other MIL problems and
applications domains. Similar to other areas of ML, the architectures and techniques
used in MIL are expected to continually develop with new innovations. With these
expected continued developments, the model-agnostic approaches presented in
Chapter 4, such as MILLI, will remain applicable.

The Future of MIL Datasets In this thesis, a range of datasets have been used. From
an interpretability perspective, datasets with instance labels are particularly useful, as
they facilitate additional interpretability evaluation metrics. However, the majority of
datasets with instance labels are synthetic, so there is a need for a greater number of real
(non-synthetic) datasets with instance labels. Furthermore, the more traditional MIL
datasets such as MUSK, TEF, etc. (as used in Chapter 4) are not sufficiently meaningful
for benchmarking, as many approaches can achieve very high performance on these
datasets with only marginal differences. Instead, more complex datasets should be used
to ensure robust evaluation, i.e., those that have multiple classes, interactions between
instances, and greater numbers of instances and bags.



172 Chapter 8. Conclusion

In summary, like many other machine learning disciplines, interpretable MIL is a
rapidly developing research area with many possible applications. As demonstrated in
this thesis, it can be used in different domains such as high-resolution imaging and time
series analysis, and these domains have direct real-world applications where
interpretability is paramount, such as Earth observation and healthcare. As MIL
methods continue to develop and be applied more widely, understanding how these
automated systems make decisions will only become more important.
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Appendix A

Appendix for Model Agnostic
Interpretability for Multiple Instance
Learning

A.1 Implementation Details

The code for this work can be found on GitHub: https://github.com/JAEarly/MILLI.
All code for this work was implemented in Python 3.8, using the PyTorch library for the
Machine Learning (ML) functionality. Hyperparameter tuning was carried out using
the Optuna library. Some local experiments were carried out on a Dell XPS Windows
laptop, utilising a GeForce GTX 1650 graphics card with 4GB of VRAM. Graphics
Processing Unit (GPU) support for ML was enabled through CUDA v11.0. Other
longer-running experiments, such as hyperparameter tuning, were carried out on a
remote GPU node utilising a Volta V100 Enterprise Compute GPU with 16GB of VRAM.
The longest model to train was the Graph Neural Network (GNN) for the Colorectal
Cancer (CRC) dataset, which took just under half an hour. The longest-running
experiment was the hyperparameter analysis for the CRC dataset at just under 40 hours.
This was due to the high number of samples for the local surrogate methods and the
fact that the results were averaged over 10 different models. The randomisation of data
splits was fixed using seeding; the seed values are provided in the code for each
experiment. We use the following sources for our data:

• The annotated Spatially Independent, Variable Area, and Lighting (SIVAL)
dataset was downloaded from the publicly accessible page:
http://pages.cs.wisc.edu/~bsettles/data/.

• The MNIST dataset was accessed directly from the PyTorch Python library:
https://pytorch.org/vision/stable/datasets.html#mnist.

https://github.com/JAEarly/MILLI
http://pages.cs.wisc.edu/~bsettles/data/
https://pytorch.org/vision/stable/datasets.html#mnist
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• The CRC dataset was downloaded from the publicly accessible page:
https://warwick.ac.uk/fac/cross_fac/tia/data/crchistolabelednucleihe/.

• The Musk dataset was downloaded from the publicly accessible page:
https://archive.ics.uci.edu/ml/datasets/Musk+%28Version+2%29

• The Tiger, Elephant and Fox datasets were downloaded from the publicly
accessible page:
http://www.cs.columbia.edu/~andrews/mil/datasets.html

A.2 SIVAL Experiment Details

SIVAL hyperparameters are given in Table A.1, detailing the values for the learning rate
(LR), weight decay (WD), and dropout (DO). Additional hyperparameters in the
training process are: batch size of one, early stopping patience of ten, and 100 epochs
maximum — these are kept consistent across the models and are also the same for
4-MNIST-Bags and CRC. The tuned architectures are given in Tables A.2 to A.5, where
FC denotes a fully connect layer and ReLU denotes the rectified linear unit activation
function. Finally, the results for each model are compared in Table A.6.

TABLE A.1: SIVAL training and
model hyperparameters.

Model LR WD DO

Embedding 5 × 10−3 1 × 10−3 0.45
Instance 5 × 10−4 1 × 10−5 0.25
Attention 1 × 10−3 1 × 10−5 0.15
Graph 5 × 10−4 1 × 10−5 0.2

TABLE A.2: SIVAL Embedding archi-
tecture.

Layer Type In Out

1 FC + ReLU + DO 30 128
2 FC + ReLU + DO 128 256
3 mil-max 256 256
4 FC 256 13

TABLE A.3: SIVAL Instance architec-
ture.

Layer Type In Out

1 FC + ReLU + DO 30 512
2 FC + ReLU + DO 512 256
3 FC + ReLU + DO 256 64
4 FC 64 13
5 mil-mean 13 13

TABLE A.4: SIVAL Attention archi-
tecture.

Layer Type In Out

1 FC + ReLU + DO 30 128
2 FC + ReLU + DO 128 256
3 FC + ReLU + DO 256 128
4 mil-attn(256) + DO 128 128
5 FC 128 13

A.3 4-MNIST-Bags Experiment Details

The training hyperparameter details are given in Table A.7. For each model, we first
passed the MNIST instances through a convolutional architecture to produce initial

https://warwick.ac.uk/fac/cross_fac/tia/data/crchistolabelednucleihe/
https://archive.ics.uci.edu/ml/datasets/Musk+%28Version+2%29
http://www.cs.columbia.edu/~andrews/mil/datasets.html
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TABLE A.5: SIVAL Graph architecture.

Layer Type In Out

1 FC + ReLU + DO 30 128

2a GNNembed SAGEConv + ReLU + DO 128 128
SAGEConv + ReLU + DO 128 256
SAGEConv + ReLU + DO 256 64

2b GNNcluster SAGEConv + Softmax 128 1

3 gnn-pool 64 64
4 FC + ReLU + DO 64 128
5 FC 128 13

TABLE A.6: SIVAL predictive performance results. Mean performance was calculated
over ten repeat trainings of each model, and the standard error of the mean is given.

Model Train Accuracy Val Accuracy Test Accuracy

Embedding 0.984 ± 0.004 0.850 ± 0.009 0.819 ± 0.012
Instance 0.967 ± 0.005 0.835 ± 0.010 0.808 ± 0.011
Attention 0.972 ± 0.007 0.830 ± 0.011 0.813 ± 0.012
Graph 0.932 ± 0.014 0.803 ± 0.014 0.781 ± 0.019

instance embeddings. This encoder was not tuned for each model (i.e., the architecture
was fixed, but the weights were learnt). The architecture for this encoder is given in
Table A.8: for the convolutional (Conv2d) and pooling (MaxPool2d) layers, the numbers
in the brackets are the kernel size, stride, and padding. The model architectures are
given in Tables A.9 to A.12. The encoder produces features vectors with 800 features,
therefore the input size to each of the models is 800. The model results are given in
Table A.13.

TABLE A.7: 4-MNIST-Bags hyperpa-
rameters.

Model LR WD DO

Embedding 1 × 10−4 1 × 10−3 0.3
Instance 1 × 10−4 1 × 10−4 0.3
Attention 1 × 10−4 1 × 10−4 0.15
Graph 5 × 10−5 1 × 10−5 0.3

TABLE A.8: 4-MNIST-Bags convolu-
tional encoding architecture.

Layer Type In Out

1 Conv2d(5, 1, 0) + ReLU 1 20
2 MaxPool2d(2, 2, 0) + DO 20 20
3 Conv2d(5, 1, 0) + ReLU 20 50
4 MaxPool2d(2, 2, 0) + DO 50 50

A.4 CRC Experiment Details

The training hyperparameter details are given in Table A.14. Following the same
procedure as the 4-MNIST-Bags experiments, for each model, we first passed the patches
through a convolutional architecture to produce initial instance embeddings. The
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TABLE A.9: 4-MNIST-Bags Embedding
architecture.

Layer Type In Out

1 FC + ReLU + DO 800 128
2 FC + ReLU + DO 128 512
3 mil-mean 512 512
4 FC 512 4

TABLE A.10: 4-MNIST-Bags Instance
architecture.

Layer Type In Out

1 FC + ReLU + DO 800 512
2 FC + ReLU + DO 512 128
3 FC + ReLU + DO 128 64
4 FC 128 4
5 mil-mean 4 4

TABLE A.11: 4-MNIST-Bags Attention architecture.

Layer Type In size Out size

1 FC + ReLU + Dropout 800 64
2 FC + ReLU + Dropout 64 256
3 mil-attn(64) + Dropout 256 256
4 FC + ReLU + Dropout 256 64
5 FC 64 4

TABLE A.12: 4-MNIST-Bags Graph architecture.

Layer Type In size Out size

1 FC + ReLU + Dropout 800 64
2 FC + ReLU + Dropout 64 64

3a GNNembed SAGEConv + ReLU + Dropout 64 128
SAGEConv + ReLU + Dropout 128 128
SAGEConv + ReLU + Dropout 128 128

3b GNNcluster SAGEConv + Softmax 64 1

4 gnn-pool 128 128
5 FC + ReLU + Dropout 128 64
6 FC 64 4

TABLE A.13: 4-MNIST-Bags model results. The mean performance was calculated over
ten repeat trainings of each model, and the standard error of the mean is given.

Model Train Accuracy Val Accuracy Test Accuracy

Embedding 0.995 ± 0.001 0.972 ± 0.002 0.971 ± 0.002
Instance 0.993 ± 0.001 0.973 ± 0.002 0.974 ± 0.002
Attention 0.991 ± 0.002 0.967 ± 0.003 0.967 ± 0.003
Graph 0.984 ± 0.002 0.968 ± 0.002 0.966 ± 0.002

architecture for this encoder is given in Table A.15, and then the model architectures are
given in Tables A.16 to A.19. The encoder produces features vectors with 1200 features,
therefore the input size to each of the models is 1200. The model results are given in
Table A.20.
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TABLE A.14: CRC training hyperpa-
rameters.

Model LR WD DO

Embedding 5 × 10−4 1 × 10−3 0.3
Instance 5 × 10−4 1 × 10−2 0.25
Attention 1 × 10−3 1 × 10−6 0.2
Graph 1 × 10−3 1 × 10−2 0.35

TABLE A.15: CRC convolutional en-
coding architecture.

Layer Type In Out

1 Conv2d(4, 1, 0) + ReLU 3 36
2 MaxPool2d(2, 2, 0) + DO 36 36
3 Conv2d(3, 1, 0) + ReLU 36 48
4 MaxPool2d(2, 2, 0) + DO 48 48

TABLE A.16: CRC Embedding archi-
tecture.

Layer Type In Out

1 FC + ReLU + DO 1200 64
2 FC + ReLU + DO 64 512
3 mil-max 512 512
4 FC + ReLU + DO 512 128
4 FC + ReLU + DO 128 64
4 FC + ReLU + DO 64 2

TABLE A.17: CRC Instance architec-
ture.

Layer Type In Out

1 FC + ReLU + DO 1200 64
2 FC + ReLU + DO 64 64
3 FC + ReLU + DO 64 64
4 FC 64 2
5 mil-max 2 2

TABLE A.18: CRC Attention architecture.

Layer Type In size Out size

1 FC + ReLU + Dropout 1200 64
2 FC + ReLU + Dropout 64 64
3 FC + ReLU + Dropout 64 256
4 mil-attn(128) + Dropout 256 256
5 FC 256 2

TABLE A.19: CRC Graph architecture.

Layer Type In size Out size

1 FC + ReLU + Dropout 1200 64
2 FC + ReLU + Dropout 64 128

3a GNNembed SAGEConv + ReLU + Dropout 128 128

3b GNNcluster SAGEConv + Softmax 128 1

4 gnn-pool 128 128
5 FC + ReLU + Dropout 128 128
6 FC 128 2

TABLE A.20: CRC model results. The mean performance was calculated over ten repeat
trainings of each model, and the standard error of the mean is given.

Model Train Accuracy Val Accuracy Test Accuracy

Embedding 0.880 ± 0.041 0.805 ± 0.034 0.795 ± 0.042
Instance 0.856 ± 0.041 0.810 ± 0.043 0.795 ± 0.049
Attention 0.870 ± 0.014 0.860 ± 0.017 0.830 ± 0.028
Graph 0.791 ± 0.039 0.765 ± 0.031 0.770 ± 0.032
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Appendix B

Appendix for Scene-to-Patch Earth
Observation with Multi-Resolution
Multiple Instance Learning

B.1 Implementation Details

This work was implemented in Python 3.10 and the Machine Learning (ML)
functionality used PyTorch. The code and a list of required libraries are available at
https://github.com/JAEarly/MIL-Multires-EO. The majority of model training was
carried out on a remote Graphics Processing Unit (GPU) service using a Volta V100
Enterprise Compute GPU with 16GB of VRAM, which utilised CUDA v11.0 to enable
GPU support (IRIDIS 5, University of Southampton). Training each model took a
maximum of four hours. Trained models can be found in the code repository. Fixed
seeds were used to ensure consistency of dataset splits between training and testing;
these are included in the scripts that are used to run the experiments. We used Weights
and Biases (Biewald, 2020) to track our experiments, along with Optuna for
hyperparameter optimisation (Akiba et al., 2019). During hyperparameter optimisation,
we ran 40 trials with pruning using the Tree-structured Parzen Estimator sampler
(Bergstra et al., 2011).

B.2 Model Architectures

The Single Resolution (SR) Scene-to-Patch (S2P) models all use a consistent architecture:
a Feature Extractor (FE) of convolutional and pooling layers, followed by a patch
classifier (fully connected layers), and finally a Multiple Instance Learning (MIL) mean
aggregator. The output of the classifier is a C-dimensional vector, which represents the

https://github.com/JAEarly/MIL-Multires-EO
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prediction for the C classes (C = 7 for DeepGlobe and C = 10 for FloodNet). Each patch
is passed independently through the FE + patch classifier to produce a prediction for
each patch, and then MIL mean aggregation is used to produce a scene-level prediction.
For the multi-resolution models Multi-Resolution Single-Out (MRSO) and
Multi-Resolution Multi-Out (MRMO), there are three FEs, one for each input resolution,
and a combined patch classifier that utilises embeddings from each input resolution (see
Section 5.3.3). The MRMO model also has independent patch classifiers for each input
resolution. Both datasets use the same model architectures for each configuration.
Below, in Tables B.1 to B.8, we give the exact architectures used.

TABLE B.1: S2P SR small architecture; patch size 28. For the Conv2d and MaxPool2d
layers, the numbers in the brackets are the kernel size, stride, and padding. b is the bag
size (number of patches), and C is the number of classes. The final three rows represent
the aggregation and classification; the other rows are for the FE.

Layer Type Input Output

Conv1 Conv2d(4, 1, 0) + ReLu b x 3 x 28 x 28 b x 36 x 25 x 25
MaxPool2d(2, 2, 0) b x 36 x 25 x 25 b x 36 x 12 x 12

Conv2 Conv2d(3, 1, 0) + ReLu b x 36 x 12 x 12 b x 48 x 10 x 10
MaxPool2d(2, 2, 0) b x 48 x 10 x 10 b x 48 x 5 x 5
Flatten b x 48 x 5 x 5 1 x b x 1200

FC1 FC + ReLU + Dropout 1 x b x 1200 1 x b x 512
FC2 FC 1 x b x 512 1 x b x 128

FC3 FC + ReLU + Dropout 1 x b x 128 1 x b x 64
FC4 FC 1 x b x 64 1 x b x C
- MIL Mean Pooling 1 x b x C 1 x 1 x C

TABLE B.2: S2P SR medium architecture; patch size 56.

Layer Type Input Output

Conv1 Conv2d(4, 1, 0) + ReLu b x 3 x 56 x 56 b x 36 x 53 x 53
MaxPool2d(2, 2, 0) b x 36 x 53 x 53 b x 36 x 26 x 26

Conv2 Conv2d(3, 1, 0) + ReLu b x 36 x 26 x 26 b x 48 x 24 x 24
MaxPool2d(2, 2, 0) b x 48 x 24 x 24 b x 48 x 12 x 12
Flatten b x 48 x 12 x 12 1 x b x 6912

FC1 FC + ReLU + Dropout 1 x b x 6912 1 x b x 512
FC2 FC 1 x b x 512 1 x b x 128

FC3 FC + ReLU + Dropout 1 x b x 128 1 x b x 64
FC4 FC 1 x b x 64 1 x b x C
- MIL Mean Pooling 1 x b x C 1 x 1 x C
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TABLE B.3: S2P SR large architecture; patch size 76. Visualised in Figure 5.2.

Layer Type Input Output

Conv1 Conv2d(4, 1, 0) + ReLu b x 3 x 76 x 76 b x 36 x 73 x 73
MaxPool2d(2, 2, 0) b x 36 x 73 x 73 b x 36 x 36 x 36

Conv2 Conv2d(3, 1, 0) + ReLu b x 36 x 36 x 36 b x 48 x 34 x 34
MaxPool2d(2, 2, 0) b x 48 x 34 x 34 b x 48 x 17 x 17

Conv3 Conv2d(3, 1, 0) + ReLu b x 48 x 17 x 17 b x 56 x 14 x 14
MaxPool2d(2, 2, 0) b x 56 x 14 x 14 b x 56 x 7 x 7
Flatten b x 56 x 7 x 7 1 x b x 2744

FC1 FC + ReLU + Dropout 1 x b x 2744 1 x b x 512
FC2 FC 1 x b x 512 1 x b x 128

FC3 FC + ReLU + Dropout 1 x b x 128 1 x b x 64
FC4 FC 1 x b x 64 1 x b x C
- MIL Mean Pooling 1 x b x C 1 x 1 x C

TABLE B.4: S2P SR large architecture; patch size 102.

Layer Type Input Output

Conv1 Conv2d(4, 1, 0) + ReLu b x 3 x 102 x 102 b x 36 x 99 x 99
MaxPool2d(2, 2, 0) b x 36 x 99 x 99 b x 36 x 49 x 49

Conv2 Conv2d(3, 1, 0) + ReLu b x 36 x 49 x 49 b x 48 x 47 x 47
MaxPool2d(2, 2, 0) b x 48 x 47 x 47 b x 48 x 23 x 23

Conv3 Conv2d(3, 1, 0) + ReLu b x 48 x 23 x 23 b x 56 x 21 x 21
MaxPool2d(2, 2, 0) b x 56 x 21 x 21 b x 56 x 10 x 10
Flatten b x 56 x 10 x 10 1 x b x 5600

FC1 FC + ReLU + Dropout 1 x b x 5600 1 x b x 512
FC2 FC 1 x b x 512 1 x b x 128

FC3 FC + ReLU + Dropout 1 x b x 128 1 x b x 64
FC4 FC 1 x b x 64 1 x b x C
- MIL Mean Pooling 1 x b x C 1 x 1 x C

TABLE B.5: S2P MRSO architecture; patch size 76. This architecture utilises the FE from
the SR large architecture (Table B.3; layers Conv1 to FC2) to create embeddings at each
input resolution. The embeddings are then concatenated (see Section 5.3.4), and finally
classified using the same classifier and MIL pooling approach as in the other models.
Note, the patch predictions of size 1 x b x C are still produced by this model but are
omitted from the table for simplicity. Visualised in Figure 5.3.

Layer Input Output

s = 0 FE b x 3 x 76 x 76 1 x b x 128
s = 1 FE 4b x 3 x 76 x 76 1 x 4b x 128
s = 2 FE 16b x 3 x 76 x 76 1 x 16b x 128

Multi-resolution Concatenation 1 x {b, 4b, 16b} x 128 1 x 16b x 384
s = m Classifier 1 x 16b x 384 1 x 1 x C
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TABLE B.6: S2P MRSO architecture; patch size 102. This architecture utilises the FE
from the SR large architecture (Table B.4; layers Conv1 to FC2).

Layer Input Output

s = 0 FE b x 3 x 102 x 102 1 x b x 128
s = 1 FE 4b x 3 x 102 x 102 1 x 4b x 128
s = 2 FE 16b x 3 x 102 x 102 1 x 16b x 128

Multi-resolution Concatenation 1 x {b, 4b, 16b} x 128 1 x 16b x 384
s = m Classifier 1 x 16b x 384 1 x 1 x C

TABLE B.7: S2P MRMO architecture; patch size 76. This architecture utilises the FE
from the SR large architecture (Table B.3; layers Conv1 to FC2) to create embeddings at
each input resolution. The embeddings are then concatenated (see Section 5.3.4), and
finally classified using the same classifier and MIL pooling approach as in the other
models. In addition, each set of embeddings is also independently classified. Patch
predictions are produced for each independent resolution as well as the combined
resolution, but are omitted from the table for simplicity. Visualised in Figure 5.3.

Layer Input Output

s = 0 FE b x 3 x 76 x 76 1 x b x 128
s = 1 FE 4b x 3 x 76 x 76 1 x 4b x 128
s = 2 FE 16b x 3 x 76 x 76 1 x 16b x 128

s = 0 Classifier 1 x b x 128 1 x 1 x C
s = 1 Classifier 1 x 4b x 128 1 x 1 x C
s = 2 Classifier 1 x 16b x 128 1 x 1 x C

Multi-resolution Concatenation 1 x {b, 4b, 16b} x 128 1 x 16b x 384
s = m Classifier 1 x 16b x 384 1 x 1 x C

TABLE B.8: S2P MRMO architecture; patch size 102. This architecture utilises the FE
from the SR large architecture (Table B.4; layers Conv1 to FC2).

Layer Input Output

s = 0 FE b x 3 x 102 x 102 1 x b x 128
s = 1 FE 4b x 3 x 102 x 102 1 x 4b x 128
s = 2 FE 16b x 3 x 102 x 102 1 x 16b x 128

s = 0 Classifier 1 x b x 128 1 x 1 x C
s = 1 Classifier 1 x 4b x 128 1 x 1 x C
s = 2 Classifier 1 x 16b x 128 1 x 1 x C

Multi-resolution Concatenation 1 x {b, 4b, 16b} x 128 1 x 16b x 384
s = m Classifier 1 x 16b x 384 1 x 1 x C



B.3. Hyperparameters 207

B.3 Hyperparameters

Optuna was used for hyperparameter optimisation (Akiba et al., 2019) — 40 trials with
pruning using the Tree-structured Parzen Estimator sampler (Bergstra et al., 2011).
Hyperparameter tuning was only carried out on the DeepGlobe dataset, i.e., the same
hyperparameters were used for the FloodNet models. This demonstrates that the
hyperparameters found this tuning process are robust, which is also supported by
consistent values across the S2P models.The resulting hyperparameters are given in
Table B.9.

TABLE B.9: Model training hyperparameters.

Configuration Max Epochs Learning Rate Weight Decay Dropout

ResNet18 30 0.05 0.10 N/A
U-Net 224 30 5 × 10−4 1 × 10−5 0.25
U-Net 448 30 5 × 10−4 1 × 10−6 0.2

S2P SR Small 8 30 1 × 10−4 1 × 10−6 0.05
S2P SR Medium 8 30 1 × 10−4 1 × 10−5 0.35
S2P SR Large 8 30 1 × 10−4 1 × 10−5 0.25

S2P SR Small 16 30 5 × 10−4 1 × 10−6 0.10
S2P SR Medium 16 30 1 × 10−4 1 × 10−6 0.05
S2P SR Large 16 30 1 × 10−4 1 × 10−5 0.35

S2P SR Small 32 30 1 × 10−4 1 × 10−6 0.25
S2P SR Medium 32 30 1 × 10−4 1 × 10−4 0.00
S2P SR Large 32 30 1 × 10−4 1 × 10−6 0.40

S2P MRSO 40 1 × 10−4 1 × 10−6 0.20
S2P MRMO 40 1 × 10−4 1 × 10−6 0.10
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Appendix C

Appendix for Non-Markovian
Reward Modelling from Trajectory
Labels via Interpretable Multiple
Instance Learning

C.1 Implementation and Resource Details

Code for this work is available in a publicly accessible GitHub repository:
https://github.com/JAEarly/MIL-for-Non-Markovian-Reward-Modelling.
This work was implemented in Python 3.8 / 3.10 and the Machine Learning (ML)
functionality used PyTorch. All required libraries for our work are given in a
requirements.txt file in the code repository. The majority of Multiple Instance
Learning (MIL) model training was carried out on a remote Graphics Processing
Unit (GPU) service using a Volta V100 Enterprise Compute GPU with 16GB of VRAM,
which utilised CUDA v11.0 to enable GPU support (IRIDIS 5, University of
Southampton). For the Lunar Lander task, training each MIL model took a maximum of
eight hours. For the other tasks, this was a maximum of two hours. Trained models are
included alongside the code. Fixed seeds were used to ensure consistency of dataset
splits between training and testing; these are included in the scripts that are used to run
the experiments. All our datasets were generated from code; both the scripts to generate
the data and the derived datasets themselves are included alongside our model training
code. Dataset generation, as well as all Reinforcement Learning (RL) agent training, was
conducted on a second remote GPU service using a compute node with two Nvidia
Pascal P100 cards. Data generation took a maximum of three hours per dataset
(BlueCrystal Phase 4, University of Bristol). Agent training for the 2D navigation tasks
was computationally light, requiring 8-12 minutes per 400-episode run, although we

https://github.com/JAEarly/MIL-for-Non-Markovian-Reward-Modelling
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completed ten repeat runs for each permutation of task and MIL model architecture
(one per MIL training repeat). 800-episode RL runs for Lunar Lander took
approximately two hours each. Further details on executing the scripts to reproduce our
results can be found in the README.md file in our code repository.

C.2 Use Cases for Non-Markovian Reward Modelling

The non-Markovian reward formulation applies to cases where rewards depend on
hidden state information ht in addition to environment states st and actions at, and this
information is a function of previous state-action pairs but not vice versa (i.e., there is no
causal path from ht to st+i for any i > 1). This crucial caveat distinguishes the
formulation from the more general class of partially observable MDPs and demarcates
the set of domains to which it can be applied: those involving a secondary Markovian
system that “spectates” on events in the environment without intervening. In the
Reward Modelling (RM) context, this secondary system is a black box (making its
internal state ht hidden) and explicit rewards are unavailable, being replaced by a
sparser and potentially noisy form of reward-dependent feedback (trajectory return
labels in our work). Below we identify three classes of use cases which fit this technical
specification and provide one concrete example for each:

Ambiguous Subtasks Cases involving an extended task with a sequential structure,
where it is hard to formally define the conditions for subtask completion, but RM is
feasible because a human “knows it when they see it”. Here, the hidden state to be
learnt represents the current subtask and any auxiliary information needed to
determine its completion status.

• Concrete Example: Using judges’ scores to learn a performative display (e.g.,
gymnastics, aerobatics) chaining several manoeuvres whose start and end
conditions are difficult to formalise a priori. This could be considered as an
extension of the single backflip task studied in the foundational RM work by
Christiano et al. (2017).

Dependencies on Subjective Affect Cases where a human’s reward function is
dependent on their affective (emotional) status, which in turn depends on their prior
experiences. Assuming this information is not directly available in the observed
environment state, it must be inferred from data.

• Concrete Example: Using periodic satisfaction ratings to train a personal assistant
robot whose owner’s mood, needs and preferences vary from day to day. These
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variations may influence the preferred driving style of a chauffeur service or
choice of evening meal.

Irrationalities/Cognitive Biases Cases where one or more forms of bias colour a
human’s post hoc rating of an observed trajectory, even if their
instantaneously-experienced reward is Markovian. Psychological studies of how
humans aggregate immediate rewards into retrospective evaluations of the quality of an
experience find that a straight summation assumption is unrealistic, with subjects
exhibiting high sensitivity to contrast effects and recency bias (collectively termed the
peak-end rule) (Kahneman, 2000), and factoring in anticipated future states in addition
to those actually observed (Ariely and Carmon, 2000).

Here, the hidden state captures an aggregate representation of the biases at play in a
given human’s evaluation.1

• Concrete Example: Using customer “star ratings” to improve a holiday planning
agent whose recommendations aim to account for an unknown mix of biases such
as the peak-end rule. The agent may use the learnt bias model to prioritise key
moments in a holiday when managing the travel schedule and budget, in order to
maximise future customers’ star ratings.

C.3 Model Architectures

C.3.1 Toy Dataset Multiple Instance Learning Model Architectures

In Tables C.1 to C.4 we give the architectures for the MIL models we used in the toy
dataset experiments. The models are a combination of Fully Connected (FC) layers
along with different MIL pooling mechanisms. Rectified Linear Unit (ReLU) activation
is applied to the FC hidden layers. We label the layers based on the part of the network
they belong to: Feature Extractor (FE), Head Network (HN), or Pooling (P); see
Section 6.3.3. Where used, MIL Long Short-Term Memory (LSTM) components are
indicated in the pooling layers. We also give the input and output sizes: T x n

1A fascinating philosophical question arises here. When (following the method of Section 6.3.2) an
RL agent is trained using a non-Markovian RM model that captures a cognitive bias, should the agent
learn to maximise rewards including the bias (which, for example, might lead it to prioritise its peak and
final reward rather than seek uniformly good performance), or exluding it (which would revert to uniform
prioritisation). This issue of whether intelligent agents should seek to exploit human irrationalities when
optimising for their revealed preferences, or appeal to their unbiased “better angels”, relates to distinctions
between first- and second-order preferences (Stanovich, 2008) or between experienced and remembered
(or decision) utility (Berridge and O’Doherty, 2014). We defer this question to those with more relevant
expertise but note that regardless of the answer, it is essential to include the biases in the reward model
using a method such as the one proposed in this work.
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represents an input or output where there is a representation of size n for each step in a
trajectory of length T (the number of instances T).

TABLE C.1: Toy Instance.

Layer Type Input Output

1 (FE) FC + ReLU T x 2 T x 2
2 (HN) FC T x 2 T x 1
3 (P) mil-sum T x 1 1

TABLE C.2: Toy EmbeddingLSTM.

Layer Type Input Output

1 (FE) FC + ReLU T x 2 T x 2
2 (P) mil-emb-lstm T x 2 2
3 (HN) FC 2 1

TABLE C.3: Toy InstanceLSTM.

Layer Type Input Output

1 (FE) FC + ReLU T x 2 T x 2
2 (P-1) mil-ins-lstm T x 2 T x 2
3 (HN) FC T x 2 T x 1
4 (P-2) mil-sum T x 1 1

TABLE C.4: Toy CSCInstanceLSTM.

Layer Type Input Output

1 (FE) FC + ReLU T x 2 T x 2
2 (P-1) mil-csc-ins-lstm T x 2 T x 2
3 (HN) FC T x 2 T x 1
4 (P-2) mil-sum T x 1 1

C.3.2 Advanced RL MIL Model Architectures

In Tables C.5 to C.8 we give the architectures for the MIL models we used in the Timer,
Moving, Key, and Charger tasks. Input features were normalised using mean/standard
deviation scaling.

TABLE C.5: RL Instance.

Layer Type Input Output

1 (FE) FC + ReLU + DO T x 2 T x 64
2 (FE) FC + ReLU + DO T x 64 T x 32
3 (FE) FC + ReLU + DO T x 32 T x 32
4 (HN) FC + ReLU + DO T x 32 T x 32
5 (HN) FC + ReLU + DO T x 32 T x 16
6 (HN) FC T x 16 T x 1
7 (P) mil-sum T x 1 1

TABLE C.6: RL EmbeddingLSTM.

Layer Type Input Output

1 (FE) FC + ReLU + DO T x 2 T x 64
2 (FE) FC + ReLU + DO T x 64 T x 32
3 (FE) FC + ReLU + DO T x 32 T x 32
4 (P) mil-emb-lstm T x 32 2
5 (HN) FC + ReLU + DO 2 32
6 (HN) FC + ReLU + DO 32 16
7 (HN) FC 16 1

For the Lunar Lander task, we used similar architectures to the other four RL tasks but
with larger layers; see Tables C.9 to C.12. The depth of the models remained the same,
as did the size of the hidden state embedding. Also note the addition of the Leaky ReLU
activation function in the HNs, which is discussed in Section 6.6.3.
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TABLE C.7: RL InstanceLSTM.

Layer Type Input Output

1 (FE) FC + ReLU + DO T x 2 T x 64
2 (FE) FC + ReLU + DO T x 64 T x 32
3 (FE) FC + ReLU + DO T x 32 T x 32
4 (P) mil-ins-lstm T x 32 T x 2
5 (HN) FC + ReLU + DO T x 2 T x 32
6 (HN) FC + ReLU + DO T x 32 T x 16
7 (HN) FC T x 16 T x 1
8 (P) mil-sum T x 1 1

TABLE C.8: RL CSCInstanceLSTM.

Layer Type Input Output

1 (FE) FC + ReLU + DO T x 2 T x 64
2 (FE) FC + ReLU + DO T x 64 T x 32
3 (FE) FC + ReLU + DO T x 32 T x 32
4 (P) mil-csc-ins-lstm T x 32 T x 2
5 (HN) FC + ReLU + DO T x 34 T x 32
6 (HN) FC + ReLU + DO T x 32 T x 16
7 (HN) FC T x 16 T x 1
8 (P) mil-sum T x 1 1

TABLE C.9: Lunar Lander Instance.

Layer Type Input Output

1 (FE) FC + ReLU + DO T x 2 T x 128
2 (FE) FC + ReLU + DO T x 128 T x 64
3 (FE) FC + ReLU + DO T x 64 T x 64
4 (HN) FC + ReLU + DO T x 64 T x 64
5 (HN) FC + ReLU + DO T x 64 T x 32
6 (HN) FC + Leaky ReLU T x 32 T x 1
7 (P) mil-sum T x 1 1

TABLE C.10: LL EmbeddingLSTM.

Layer Type Input Output

1 (FE) FC + ReLU + DO T x 2 T x 128
2 (FE) FC + ReLU + DO T x 128 T x 64
3 (FE) FC + ReLU + DO T x 64 T x 64
4 (P) mil-emb-lstm T x 64 2
5 (HN) FC + ReLU + DO 2 64
6 (HN) FC + ReLU + DO 64 32
7 (HN) FC + Leaky ReLU 32 1

TABLE C.11: LL InstanceLSTM.

Layer Type Input Output

1 (FE) FC + ReLU + DO T x 2 T x 128
2 (FE) FC + ReLU + DO T x 128 T x 64
3 (FE) FC + ReLU + DO T x 64 T x 64
4 (P) mil-ins-lstm T x 64 T x 2
5 (HN) FC + ReLU + DO T x 2 T x 64
6 (HN) FC + ReLU + DO T x 64 T x 32
7 (HN) FC + Leaky ReLU T x 32 T x 1
8 (P) mil-sum T x 1 1

TABLE C.12: LL CSCInstanceLSTM.

Layer Type Input Output

1 (FE) FC + ReLU + DO T x 2 T x 128
2 (FE) FC + ReLU + DO T x 128 T x 64
3 (FE) FC + ReLU + DO T x 64 T x 64
4 (P) mil-csc-ins-lstm T x 64 T x 2
5 (HN) FC + ReLU + DO T x 66 T x 64
6 (HN) FC + ReLU + DO T x 64 T x 32
7 (HN) FC + Leaky ReLU T x 32 T x 1
8 (P) mil-sum T x 1 1

C.4 Further Details on Reinforcement Learning Training

Adopting OpenAI Gym terminology (Brockman et al., 2016), non-Markovian reward
functions (both ground truth oracles and learnt LSTM-based models) are implemented
as wrappers on rewardless base environments. The role of a wrapper is to track the
hidden state of either the oracle or the LSTM throughout an episode and use this to
compute rewards to return to the agent. In the “Oracle (without hidden state)” baseline,
we return the raw environment state (e.g., the 2D position [xt, yt]) to the agent
unmodified. Otherwise, we concatenate the post-update hidden state ht+1 onto the end
of the environment state, thereby expanding the state space from the agent’s
perspective and making rewards Markovian.
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This wrapper-based approach allows us to use a completely vanilla RL algorithm. For
the 2D navigation tasks, we use a Deep Q-Network (DQN) agent (Mnih et al., 2015)
with the double Q-learning trick (Van Hasselt et al., 2016) enabled. For Lunar Lander,
which has a continuous action space, we use Soft Actor-Critic (SAC) (Haarnoja et al.,
2018). In both cases, we use a value network with ReLU activation functions, which is
updated on every timestep by sampling batches of size 128 from a replay buffer.
Bellman updates use a discount factor of γ = 0.99 and are implemented by the Adam
optimiser with a learning rate of 1e−3. A target network tracks the primary one by
Polyak averaging of parameters with a coefficient of 5e−3 per timestep. Additional
hyperparameters are given below:

• 2D tasks (DQN): number of training episodes = 400; replay buffer capacity = 5e4;
value network hidden layer sizes = [256, 128, 64]; policy greediness ϵ linearly
decayed from 1 to 0.05 over the first 200 episodes and held constant thereafter.

• Lunar Lander (SAC): number of training episodes = 800; replay buffer capacity
= 1e5; value/policy network hidden layer sizes = [256, 256]; policy entropy
regularisation coefficient α = 0.2; policy updates with Adam optimiser (learning
rate 1e−4).
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Appendix D

Appendix for Inherently
Interpretable Time Series
Classification via Multiple Instance
Learning

D.1 Implementation Details

The code for this project was implemented in Python 3.8, with PyTorch as the main
library for Machine Learning (ML). A standalone code release is available at:
https://github.com/JAEarly/MILTimeSeriesClassification. This includes our
synthetic dataset and the ability to use our plug-and-play MILLET models. Model training
was performed using an NVIDIA Tesla V100 Graphics Processing Unit (GPU) with
16GB of VRAM and CUDA v12.0 to enable GPU support. For reproducibility, all
experiments with a stochastic nature (e.g., model training, synthetic data generation,
and sample selection) used pseudo-random fixed seeds. A list of all required libraries is
given in the code release mentioned above.

D.2 Model Details

D.2.1 MILLET Model Architectures

In the following section, we provide details on our MILLET models. For conciseness, we
omit details on the backbone architectures. See Wang et al. (2017) for details on FCN and
ResNet, and Ismail Fawaz et al. (2020) for details on InceptionTime. Each of the three
Feature Extractor (FE) backbones used in this work produces fixed-size time point

https://github.com/JAEarly/MILTimeSeriesClassification
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embeddings of length d = 128: Z ∈ RT×128 = [x1, . . . , xT], where T is the input time
series length. This is the initial Feature Extraction phase and uses unchanged versions of
the original backbones.

A breakdown of the general model structure is given in Equation D.1. Note how
Positional Encoding is only applied after Feature Extraction. Furthermore, Positional
Encoding and Dropout are only applied in MILLET models, i.e., when using Instance,
Attention, Additive, or Conjunctive pooling.

Feature Extraction → Positional Encoding → Dropout → MIL Pooling (D.1)

Below we detail the Positional Encoding processes and then give architectures for each of
the Multiple Instance Learning (MIL) Pooling approaches. These are kept unchanged
across the backbones.

D.2.2 Positional Encoding

Our approach for Positional Encoding uses fixed positional encodings (Vaswani et al.,
2017):

PE(t,2i) = sin(t/100002i/d),

PE(t,2i+1) = cos(t/100002i/d), (D.2)

where t = [1, . . . , T] is the position in the time series, d = 128 is the size of the time
point embeddings, and i = [1, . . . , d/2]. As such, the Positional Encoding output is the
same shape as the input time point embeddings (RT×128). The positional encodings are
then simply added to the time point embeddings.

In cases where time points are removed from the bag, e.g., when calculating Area Over
the Perturbation Curve to Random (AOPCR) (see Section 7.3.6), we ensure the
positional encodings remain the same for the time points that are still in the bag. For
example, if the first 20 time points are removed from a time series, the 21st time point
will still have positional encoding PE(21), not PE(1).

D.2.3 Multiple Instance Learning Pooling Architectures

In Tables D.1 to D.5 we provide architectures for the different MILLET pooling methods
used in this work (see Figure 7.2 for illustrations). Each row describes a layer in the
pooling architecture. In each case, the input is a bag of time point embeddings
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(potentially with positional encodings and dropout already applied, which does not
change the input shape; see Appendix D.2.2). The input is batched with a batch size of b,
and each time series is assumed to have the same length T. Therefore, the input is
four-dimensional: batch size × number of channels × time series length × embedding
size. However, in this work, as we are using univariate time series, the number of
channels is always one. The problem has C classes, and the pooling methods produce
logit outputs – softmax is later applied as necessary.

TABLE D.1: MIL pooling: Embedding (GAP).

Process Layer Input Output

Pooling Mean b × 1 × T × 128 (Time Point Embs.) b × 1 × 1 × 128 (TS Emb.)

Classifier Linear b × 1 × 1 × 128 (Time Series Emb.) b × 1 × 1 × C (TS Pred.)

TABLE D.2: MILLET pooling: Attention. We use an internal dimension of 8 in the
attention head and apply sigmoid rather than softmax due to the possibility of long
time series. Attention weighting scales the time point embeddings by their respective
attention scores.

Process Layer Input Output

Attention Linear + tanh b × 1 × T × 128 (TP Embs.) b × 1 × T × 8
Linear + sigmoid b × 1 × T × 8 b × 1 × T × 1 (Attn. Scores)

Pooling Attn. Weighting b × 1 × T × 128 (TP Embs.) b × 1 × T × 128
Mean b × 1 × T × 128 b × 1 × 1 × 128 (TS Emb.)

Classifier Linear b × 1 × 1 × 128 (TS Emb.) b × 1 × 1 × C (TS Pred.)

TABLE D.3: MILLET pooling: Instance.

Process Layer Input Output

Classifier Linear b × 1 × T × 128 (TP Embs.) b × 1 × T × C (TP Preds.)

Pooling Mean b × 1 × T × C (TP Preds.) b × 1 × 1 × C (TS Pred.)

TABLE D.4: MILLET pooling: Additive.

Process Layer Input Output

Attention Linear + tanh b × 1 × T × 128 (TP Embs.) b × 1 × T × 8
Linear + sigmoid b × 1 × T × 8 b × 1 × T × 1 (Attn. Scores)

Classifier Attn. Weighting b × 1 × T × 128 (TP Embs.) b × 1 × T × 128
Linear b × 1 × T × 128 b × 1 × T × C (TP Preds.)

Pooling Mean b × 1 × T × C (TP Preds.) b × 1 × 1 × C (TS Pred.)
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TABLE D.5: MIL pooling: Conjunctive. In this case, attention weighting scales the
time point predictions by their respective attention scores, rather than scaling the
embeddings.

Process Layer Input Output

Attention Linear + tanh b × 1 × T × 128 (TP Embs.) b × 1 × T × 8
Linear + sigmoid b × 1 × T × 8 b × 1 × T × 1 (Attn. Scores)

Classifier Linear b × 1 × T × 128 (TP Embs.) b × 1 × T × C (TP Preds.)

Pooling Attn. Weighting b × 1 × T × C (TP Preds.) b × 1 × T × C
Mean b × 1 × T × C b × 1 × 1 × C (TS Pred.)

D.2.4 Training and Hyperparameters

In this work, all models were trained in the same manner. We used the Adam optimiser
with a fixed learning rate of 0.001 for 1500 epochs and trained to minimise cross-entropy
loss. Training was performed in an end-to-end manner, i.e., all parts of the networks
(including the backbone FE layers) were trained together, and no pre-training or
fine-tuning was used. Dropout (if used) was set to 0.1, and batch size was set to
min(16, ⌊num training time series/10⌋) to account for datasets with small training set
sizes. For example, if a dataset contains only 100 training time series, the batch size is
set to 10.

No tuning of hyperparameters was used – values were set based on those used for
training the original backbone models. As the existing Deep Learning (DL) Time Series
Classification (TSC) methods used fixed hyperparameters, our decision not to tune the
hyperparameters facilitates a fairer comparison. It also has the benefit of providing a
robust set of default values for use in derivative works. However, better performance
could be achieved by tuning hyperparameters for individual datasets. We would expect
hyperparameter tuning for MILLET to have a greater impact than doing so for the Global
Average Pooling (GAP) versions of the models as MILLET provides more scope for
tuning (e.g., dropout, attention-head size, and whether to include positional encodings).
As greater flexibility is achieved by having the ability to add/remove/tune the
additional elements of MILLET, this would lead to more specialised models (and larger
performance improvements) for each dataset. For example, in our ablation study
(Section 7.6.4), we found that positional encoding was beneficial for some datasets but
not others.

No validation datasets were used during training or evaluation. Instead, the final model
weights were selected based on the epoch that provides the lowest training loss. As
such, training was terminated early if a loss of zero was reached (which was a very rare
occurrence, but did happen). Models started with random weight initialisations, but
pseudo-random fixed seeds were used to enable reproducibility. For repeat training, the
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seeds were different for each repeat (i.e., starting from different random initialisations),
but these were consistent across models and datasets.

D.3 SHAP Details

In our Shapley Additive Explanations (SHAP) implementation we used random
sampling of coalitions. Guided sampling (selecting coalitions to maximise the SHAP
kernel) would have proved too expensive: the first coalitions sampled would be all the
single time point coalitions and all the T − 1 length coalitions (for a time series of length
T), which results in 2T coalitions and thus 2T calls to the model. In the case of
WebTraffic, this would be 2016 samples, rather than the 500 we used with random
sampling (which still took far longer to run than MILLET, see Section 7.6.3.2).
Furthermore, Early et al. (2022c, Chapter 4) showed random sampling to be equal to or
better than guided sampling in some cases.

D.4 UCR Dataset Details

For the UCR datasets, we used the original train/test splits as provided by the archive
source.1 z-normalisation was applied to datasets that were not already normalised. The
exhaustive list of univariate UCR datasets used in this work is:

Adiac, ArrowHead, Beef, BeetleFly, BirdChicken, Car, CBF,

ChlorineConcentration, CinCECGTorso, Coffee, Computers, CricketX,

CricketY, CricketZ, DiatomSizeReduction, DistalPhalanxOutlineAgeGroup,

DistalPhalanxOutlineCorrect, DistalPhalanxTW, Earthquakes, ECG200,

ECG5000, ECGFiveDays, ElectricDevices, FaceAll, FaceFour, FacesUCR,

FiftyWords, Fish, FordA, FordB, GunPoint, Ham, HandOutlines, Haptics,

Herring, InlineSkate, InsectWingbeatSound, ItalyPowerDemand,

LargeKitchenAppliances, Lightning2, Lightning7, Mallat, Meat,

MedicalImages, MiddlePhalanxOutlineAgeGroup, MiddlePhalanxOutlineCorrect,

MiddlePhalanxTW, MoteStrain, NonInvasiveFetalECGThorax1,

NonInvasiveFetalECGThorax2, OliveOil, OSULeaf, PhalangesOutlinesCorrect,

Phoneme, Plane, ProximalPhalanxOutlineAgeGroup,

ProximalPhalanxOutlineCorrect, ProximalPhalanxTW, RefrigerationDevices,

ScreenType, ShapeletSim, ShapesAll, SmallKitchenAppliances,

SonyAIBORobotSurface1, SonyAIBORobotSurface2, StarLightCurves,

Strawberry, SwedishLeaf, Symbols, SyntheticControl, ToeSegmentation1,

ToeSegmentation2, Trace, TwoLeadECG, TwoPatterns, UWaveGestureLibraryAll,

UWaveGestureLibraryX, UWaveGestureLibraryY, UWaveGestureLibraryZ, Wafer,

Wine, WordSynonyms, Worms, WormsTwoClass, Yoga.
1https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
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